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Curriculum Vitae

Speaker Name: Insuk Lee, Ph.D.

» Personal Info

Name Insuk Lee
Title Professor
Affiliation Yonsei University

» Contact Information

Address 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
Email insuklee@yonsei.ac.kr

Phone Number 02-2123-5559

Research interest : Single-cell biology, Cancer immunology, Metagenomics, Human gut microbiome,

Network biology, Biological data mining

Educational Experience
1993 B.S. in Biology, Hanyang University, Korea
2002 Ph.D. in Microbiology, University of Texas at Austin, USA

Professional Experience
2002-2008 Postdoc Fellow and Research Associate, University of Texas at Austin, USA
2008-Present Assistant/Associate/Full Professor, Yonsei University, Korea

Selected Publications (5 maximum)

1. Junha Cha, Insuk Lee Single-cell Network Biology for Resolving Cellular Heterogeneity in Human
Diseases Experimental & Molecular Medicine 2020 Nov;52(11):1798-1808

2. Jimin Son, Jae-Won Cho, Hyo Jin Park, Jihyun Moon, Seyeon Park, Hoyoung Lee, Jeewon Lee,
Ga min Kim, Su-Myeong Park, Sergio A. Lira, Andrew N. Mckenzie, Hye Young Kim, Cheol Yong
Choi, Yong Taik Lim, Seong Yong Park, Hye Ryun Kim, Su-Hyung Park, Eui-Cheol Shin, Insuk Lee
& Sang-Jun Ha, Tumor-Infiltrating Regulatory T Cell Accumulation in the Tumor Microenvironment
is Mediated by IL33/ST2 Signaling Cancer Immunology Research 2020 Nov; 8(11):1393-1406

3. Seungbyn Baek, Insuk Lee Single-cell ATAC sequencing analysis: from data preprocessing to
hypothesis generation Computational and Structural Biotechnology Journal 2020 June
28;18:1429-1439

4. Kyungsoo Kim, Seyeon Park*, Seong Yong Park, Gamin Kim, Su Myeong Park, Jae-Won Cho,
Da Hee Kim, Young Min Park, Yoon Woo Koh, Hye Ryun Kim, Sang-Jun Ha** and Insuk Lee,
Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a
predictor for anti-PD-1 responses in human cancer Genome Medicine 2020 Feb 28;12:22

5. Kyungsoo Kim, Sunmo Yang, Sang-Jun Ha, Insuk Lee, VirtualCytometry: a webserver for
evaluating immune cell differentiation using single-cell RNA sequencing data Bioinformatics 2020
Jan 15;36(2):546-551
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« Why single-cell network biology?

» The major aim of single-cell biology is understanding cellular heterogeneity.

+ Cell-type-specific phenotypes are governed by activity of cell-type-specific regulators and
target programs (i.e. cell-type specific gene expression programs).

* Gene expression programs are mainly mediated by transcriptional regulatory programs
(=transcriptional regulatory networks).

» Therefore, deciphering gene regulatory network (GRN) will facilitate understanding cellular
heterogeneity.

« Currently we can link only ~60% of the disease-associated non-coding SNPs in regulatory
elements to an eQTL effect. Because many of the eQTL may have cell-type-specific regulatory
effects (eQTL analysis was traditionally conducted with tissue samples).

» Therefore, understanding mechanisms of disease genetics needs cell-type-specific GRN.

* Furthermore, single-cell gene expression data allow to generate GRN for individuals
(personalized GRN), which may facilitate implementation of precision medicine in the future.

Integrated network for heterogeneous Cell-type-specific and personalized
cell-types and population. GRNs
Specifying context e
Single-cell data for each cell-type 0‘ 0 0
and individual. e

“ Network inference from single-cell transcriptome data
» Pros

« Larger numbers of data points (>1000’s cells in general) yield higher statistical power.

+ Cell-type-specific transcriptome data contains signals based on cell-state variation that
provides cell-type-specific pathway links more than compositional variation.

* Regulatory relationship can be inferred by cell-to-cell variation within a single person
(i.e. personal network).

» Cons

+ High noise and sparsity (dropout): cause high proportion of false positive links

« Types of single-cell gene networks
» Single-cell Gene Regulatory Network (directional links)
» Single-cell Co-regulatory (or co-expression) Network (peer-to-peer links)

« Approaches to single-cell network inference
+ Statistical approaches: Correlation; Mutual information
* Machine learning: Random forest; Gradient boosting machine
+ Data preprocessing: Dropout imputation; Transformation




% Cell-state variation vs compositional variation with bulk tissue RNA-seq data

»  Schematic of cellular composition effects on gene expression

variance in bulk tissue. . .
] ] ) ) Cell Type expression Profiles
» Top: Cell type (CT) profiles for five genes in a hypothetical

tissue with two cell types. Genes 1 and 2 are marker genes for celitypeA Q|| O | |9 |87

cell type B. Gene 3 is a marker gene for cell type A. Gene 4 is

expressed in both cell types but at different levels, whereas ceipes |8| |10] 0] 3] |7
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Gene 5 is expressed at equal levels. 0@
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* Middle: Hypothetical cellular compositions of five bulk tissue
samples. Each sample ai has the same amount of biological Cellular composition in bulk tissue samples

material but different proportions of each cell type.

+ Bottom: The expected observed expression levels. Genes 1 and Cell type A 27
2 are positively correlated and negatively correlated with Genes S
3 and 4. Gene 5 is expressed at the same level in all the bulk Cell type B 71 i
tissue samples as it is equally expressed in all cell types. . 87 83
13 ] 17 DA
G P . a; dp 043z Ay dAs
. enes that have similar expression patterns across samples

cell types will have correlated RNA levels in bulk
tissue, due to the effect of variation in cellular
composition.

*  Much bulk tissue expression is explained by cellular Expression of the genes In the bulk tissue

composition variation among samples, rather than g Gono 1 ——--
intra-cell-type regulatory relationships. :‘; 6 Gene2
+ Dominant cellular composition-induced co-expression g 4 Gene 3 —
mask underlying within-cell co-regulatory links in bulk Ex 2 g::::_

RNA-seq data.

* Thus, we may need co-expression analysis using
scRNA-seq data to map within-cell coregulatory links.

samples

Genome Res. 30:849 (2020)

+ Network inference with bulk RNA-seq vs scRNA-seq
a Network inference with bulk RNA-seq
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(a) In network inference with bulk RNA-seq, correlation between genes by variation of cell-type composition across
tissue samples is dominant. Thus, network is mostly composed of cell-type composition-induced co-expression.

(b) In network inference with scRNA-seq, using gene-by-cell count matrix for each cell type, we can infer networks mainly

composed of within-cell co-regulatory links.
P g y Cha and Lee. Exp. Mol. Med. (2020)
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% Single-cell Gene Regulatory Network from scRNA-seq data

» GRN inference from transcriptome data relies on the assumption that regulatory information
can be extracted from the expression pattern.

» GRN inference methods using pseudotime ordered cells
* Most GRN modeling methods developed for scRNA-seq data requires the cells to be ordered by
pseudotime in the input data.

» For example, LEAP (Bioinformatics 33:764, 2017) applies Pearson’s correlation over temporal
window of a fixed size with different time lags.

* Others are SINCERITIES (Bioinformatics 34:258, 2018), SCODE (Bioinformatics 33:2314, 2017)

» Then, network inferences will rely on the quality of pseudotime analysis of scRNA-seq data:
“robustness issue”.

» GRN inference methods based on Boolean models

» Boolean models focus on logical combination of TFs required to transit from one state to
another in dynamic process, resulting in state-graph for key TFs involved in state changes.

» However, it does not provide target information and computational demands increase rapidly
with network size because of high-dimensional parameter spaces. (thus generally used for
network with <100 genes): “scalability issue”

v" We prefer GRN inference methods which are robust and scalable to any single-cell transcriptome
data: Partial correlation (calculated by R package PPCOR), PIDC, GENIE3 and GRNBoost

» Benchmarking GRN inferences from scRNA-seq data Nature Methods 17:147 (2020)

» Inrecent benchmarking based on scRNA-seq data from human and mouse, the GRN inference
methods with no requirement for time-ordered cells were all top ranked in terms of accuracy.

* Since PIDC, GENIE3, GRNBoost2, and PPCOR do not require pseudotime-ordered cells, they are
immune to any errors in pseudotime computation.

Properties Accuracy Stability Scalability (genes)
& &
\5\(? é‘e a &> o &
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PIDC MI - X X X im  5m
GENIE3 RF - X & K
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ODE
SCODE ODE+Reg parsiatar v v v
PPCOR Corr - X X v
SINCERITIES Reg - A S
SCRIBE MI Type of RDI v v X
Regression
SINGE GC parameters v v X
LEAP Corr Lag v v X
GRISLI ODE+Reg Regression  ,  ,  x
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» Benchmarking GRN inferences from scRNA-seq data Nature Methods 17:147 (2020)

GRNBOOST2 BT

MI (mutual information); RF (random forest); BT (boosting); Corr (correlation);

GENIE3 (RF) and GRNBoost2 (BT) infer directional edges (TF - target), whereas PPCOR (Corr)
and PIDC (M) infer unidirectional edges.

PPCOR is fast but shows the lowest accuracy.
PIDC is fast and shows the highest accuracy.
GENIE3 and GRNBoost2 show relatively high accuracy, but GENIE3 is very slow for >1000 cells.

GENIE3 and PIDC also had better stability across multiple runs, whereas GRNBoost2 was less
sensitive to the presence of dropouts.

Since GRNBoost2 and GENIE3 have multithreaded implementations now, they are as fast as PIDC.

Properties Accuracy Stability Scalability (genes)
a.
& @
&c\ 60‘@ Time Memory
3
© 100 500 1,000 2,000 100 500 1,000 2,000
PIDC M 1s
GENIE3 RF 5m

=l

im 5m im
1s 1s

1M 01 0.1G‘0.1Gl

PPCOR Corr 1s 1s
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Partial Correlation

The principle underlying correlation networks is that if two genes have highly-correlated
expression patterns (i.e. they are co-expressed), then they are assumed to participate
together in aregulatory interaction.

It is important to highlight that co-expressed genes are indicative of an interaction but
this is not a necessary and sufficient condition. Partial correlation is a measure of the
relationship between two variables while controlling for the effect of other variables.

In complex system, processes often interdependent. For example, the abundance of
clouds is often correlated with the amount of aerosol particles in the atmosphere.

But both are also correlated with wind speed. Wind speed might be a “mediating” or
“confounding” variable.

Here we want to test for an association two variables after controlling for the effect of
one or more potentially confounding variables.

Correlation coefficient is adjusted for correlations between each variable (A, B) and
potential confounding variable C.

r,5 — TACTBC
V1 - 7AZAC\/l — 15

Null hypothesis: there is no association between the two variables after controlling for effects
of confounding variable(s).

Typc=

Therefore the presence of an edge between A and B indicates that a correlation exists between
A and B regardless of which other nodes are being conditioned on.




* Venn Diagram explanation

Variance in Variance in

variable A variable B
Variance in variable B Variance in variable B
accounted for by variable A accounted for by variable A
after removing effects of : Correlation

variable C (confounding
variable): Partial correlation

Variance in variable C

« Typically, gene expression profiles from single cell data follow multimodal distribution rather
than a unimodal continuous shape. Therefore, Pearson correlation coefficient are less suited
for single cell expression data because this metric measures a linear dependency between two
variables.

+ Given the non-linear nature of single cell gene expression data, honparametric methods such as
the Spearman correlation and Kendall rank correlation coefficients are more appropriate.

+ It also computes a p-value for each correlation.
» Since these values are symmetric, this method yields an undirected regulatory network.

* We use the sign of the correlation, which is bounded between -1 and 1, to signify whether an
interaction is inhibitory (negative) or activating (positive).

» Benchmarking metrics for gene-gene association with SCRNA-seq data  Nat. Methods 16:381 (2019)

* All perform very poor, although measures of

. . . Functional coheren f sSCRNA- -
proportionality between two variables work best. unctional coherence of s¢ seq co

regulatory networks (213 datasets).
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PIDC (Partial Information Decomposition and Context)  Cell Syst. 2017;5(3):251-67. e3

+ Mutual information (MI) measure has advantages over correlation measure, as it can capture
complex non-linear and non-monotonic dependencies.

» Calculating Ml involves estimating pairwise joint probability distributions, generally requiring
density estimation or data discretization, and the accuracy of these estimates depends on the
sample sizes.

+ The entropy, H(X), quantifies the uncertainty in the probability distribution, p(x), of a random
variable X. For a discrete random variable, HX)= — Zp(x)logp(x)

xeX

* Ml between two random variables X and Y; 1(X;Y) = H(X) + H(Y) — H(X, Y), where H(X, Y) is the
joint entropy assuming independence of X and Y.

» For apair of co-regulated genes, their observed H(X, Y) is lower, and have higher M.

» Single-cell datasets are sufficiently large to allow us to accurately estimate probability distributions
between more than two variables based on multivariate information (MVI) theory.

* MVI measure improves accuracy of estimated information dependency.
+ Partial information decomposition (PID) enables to provide a meaningful measure of MVI.

» PID considers the information provided by a set of source variables (or genes), S = {X, Y}, about
another target variable, Z, partitioned into redundant, synergistic, and unique information.

* 1(Z; X, Y)=Synergy(Z; X,Y)+ Unique,(Z; Y) + Unique(Z; X) + Redundancy(Z; X, Y)

+ Redundant information is the portion of information about Z that can be provided by either
variable in S alone;

* Unique information from X (or Y) is the portion of information provided only by X (or only Y)

* Synergistic information is the portion of information that is only provided by knowledge of
both X and Y.

>

Examples of Ml calculation

Below two profile pairs have same Euclidean distance. However...
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

For marginal entropy, P(0) =0, P(1) = 1

H(X) = -(0*log,(0))-(1*log,(1)) = 0: low complexity of each random variable

H(Y) = H(X)

For joint entropy, P(0,0) =0, P(0,1) =0, P(1,0)=0,P(1,1) =1

H(X,Y) = -(0*log,(0))-(0*log,(0))-(0*log,(0))-(1*log,(1)) = 0: low complexity of joint incident
Thus M(X,Y) = 0+0-0 = 0.

1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0

For marginal entropy, P(0) = 0.5, P(1) = 0.5

H(X) = -(1/2*log,(1/2))-(1/2*l0g,(1/2)) = 0.5 + 0.5 = 1:

H(Y) = H(X)

For joint entropy, P(0,0) = 0.5, P(0,1) =0, P(1,0) =0, P(1,1) = 0.5

H(X,Y) = -(1/2*10g,(1/2))-(0*log,(0))-(0*log,(0))-(1/2*log,(1/2)) = 0.5+0.5 = 1:

Thus M(X,Y) = 1+1-1 = 1.
PIDC network MI network

PIDC outperforms pairwise MI-based algorithms.

The larger sample sizes of single-cell data are vital
for PIDC-based network inference.
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Network inference based on PID and Context

In a network of n genes, given a pair of genes X and Y, there are n — 2 gene triplets involving the
pair. The Ml between X and Y, I(X;Y) is unaffected by the choice of the third gene, Z, because Ml is
a pairwise measure, but Unique,(X;Y), varies depending on Z.

The ratio Unique,(X;Y)/I1(X;Y) is the proportion of Ml that is accounted for by unique information
between X and Y. This ratio would be higher if X and Y are connected.

Proportion of unique contribution (PUC) between two genes X and Y as the sum of this ratio
calculated using every other gene Z in a network.

For network inference, the redundancy and unique information contributions are first estimated for
every gene triplet, then the PUC is calculated for each pair of genes in the network.

Finding a threshold for defining an edge at

. . . Xe o Z Ratios of Proportional
this stage Is prOblemath, because the Y\.//'\ . unique to mutual unique Gene context
distributions of PUC scores differ / ¥ nformation contrbution
[ ]
between genes, thus setting a global FAN N
threshold for PUC scores across the whole ° o 2, Unigquez, (X;Y) fx(u)
network risks biasing the results by factors /' \'\- - I(X;Y) — uxy —
such as expression variability. 2 ¢ Uniquez, (Y; X)
[ 2N ey ———
Therefore, confidence of an edge that o o s Iy fr(u)
takes into account the network context is \-//'\-\, s
used. / Y :
Cc=Fx(uxy)+Fy(uxy) FAN ’

where F4(U) is the cumulative distribution
function of all the PUC scores involving
gene X.

The resulting network is undirected since the
proportional unique contribution is symmetric.

Probability

Proportional unique contribution

% GENIE3 (GEne Network Inference with Ensemble of trees) PLoS ONE 5(9): e12776 (2010)

GENIES is a GRN inference method based on variable selection with ensembles of regression
trees. In each of the regression problems, the expression pattern of one of the genes (target
gene) is predicted from the expression patterns of all the other genes (input genes), using
tree-based ensemble methods Random Forests (RF).

The importance of an input gene in the prediction of the target gene expression pattern is
taken as an indication of a putative regulatory link.

Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from
which the whole network is reconstructed.

Tree-based ensemble methods doesn't make any assumption about the nature of gene regulation,
can potentially capture high-order conditional dependencies between expression patterns.

Importantly, GENIE3 produces directed GRNs, and naturally allows for the presence of feedback
loops in the network. It is also fast and scalable.

A network inference algorithm was defined as a procedure that exploits a set of gene expression
vectors to assign weights to putative regulatory links from any gene i to any gene j, with the
aim of yielding large values for weights which correspond to actual regulatory interactions.

Exploiting expression data, the identification of the regulatory genes for a given target gene is
defined as determining the subset of genes whose expression directly influences or is
predictive of the expression of the target gene.

Therefore, here the network inference problem is equivalent to a feature selection problem.

Importantly, variable (i.e., gene) importance can be computed from a tree that allows to rank the
input features according to their relevance for predicting the output. GENIE3 uses a measure which
at each test node computes the total reduction of the variance of the output variable due to the split.




* The overall importance of one variable is computed by summing the importance values of all
tree nodes where this variable is used to split. Those attributes that are not selected at all obtain
a zero value of their importance, and those that are selected close to the root node of the tree
typically obtain high scores.

+ Attribute importance measures can be easily extended to ensembles, simply by averaging
importance scores over all trees in the ensemble.

= GENIE3 procedure

1.

For each genej=1, ... ,p, a learning sample LSi is generated with expression levels of j as output
values and expression levels of all other genes as input values.

Afunction f; is learned (with RF) from LS and a local ranking of all genes except j is computed.
The p local rankings are then aggregated to get a global ranking of all regulatory links.

Expression data

Gene, Genez Gene; Gene 3
J Learning f; Gene ranking

Tree ensemble,
—_— o DN e <
P WAS N0

Interaction ranking

Tree ensemblez
- ‘(- o )

........

-

Treeen semblep
KN e AN

D Output gene Input gene

+ Ensemble Learning

7
0’0

Goal: to combine weak models (classifiers or regressions) into a final model that has a better
generalization performance than the individual models.

Ensemble method
Ensemble methods use multiple learning algorithms (e.g., decision tree, logistic regression, etc)
to obtain better predictive performance.

Two major types of ensemble learning approaches: Bagging and Boosting

Bagging (L. Breiman, 1994)
Building multiple models (e.g., —
classifiers C,, C,, ..., C,,) on the Training set

same learner using bootstrap
samples of the original training Bootstrap T,
samples — T
\ 2 . /

H

sets (T, Ty, ..., Tp) 2
Aggregating prediction results

(e.g., majority voting in l z
classification) for the final model Classification <j =
€, & G o
models 5]
oo | | .
Predictions P, 5 P,
Voting
¥
Final prediction Pf

-O-




<+ Random Forests

A popular ensemble learner with bagging approach

Combining individual trees (weak learners) to build random forests (strong learner)

= Steps

« Draw a random bootstrap sample of size n (choose n random samples out of total n samples
with replacement)

Make weak decision trees from the bootstrap samples with two hyperparameters:
- Maximum depth of the tree: d

Test Sample Input

— The number of trees in the forest: k

Split input data using the best feature to
maximize the information gain.

Tree 600

Repeat above steps for d features for k trees
Aggregate the prediction of each tree

by majority voting (in classification) or
averaging (variable weight scores in

Prediction 1 Prediction 2

regression) ‘ Average All Predictions ‘
Random Forest
Prediction
= Pros and Cons

Don't need to prune the random forest in general, since the ensemble model is quite robust to
the noise from individual decision trees

The larger the number of trees k, the better the performance of the random forest
Large computational cost for large k

< GRNBoOOSt Nature Methods 14:1083 (2017)

+  GRNBoost is based on the same concept as GENIE3 but using the gradient-boosting machines
(GBM). Boosting is an ensemble learning strategy.

*  GRNBoost uses stumps (regression trees of depth 1) as the base learner.

GRNBoost GRNBoost
Olig1 ® GENIE3
0.4 axo?. ensheathment (G0:0008366) 12 " GENIE3
- Sox10
axon ensheathment (GO:0008366) ’(";
—
¢/ Left 2
— e of (GO:1901342) _8 8
@© Dix1 =
8 02 behavior (GO:0007610) (]
o Neurod1 _g
regulation of synaptic plasticity (GO:0048167) -t 4 B
e Rel c
5 = defence response (GO:0006952) =
o 14
0 0-
0 02 04 3005 3k 10k 100k #cells
Precision

3

*

GRNBoOSt2 Bioinformatics 35:2159 (2019)

+  GRNBoost2 employs a regularized stochastic variation on GBMs. It equips GBM regressions with
a heuristic early-stopping regularization strategy using out-of-bag improvement estimates.

Each new decision tree is trained in function of a random subset of observations (90%, hence
stochastic), whereas the remaining (10%, out-of-bag) observations are used to calculate an
estimate of the loss function improvement entailed by adding that tree to the ensemble.

* When the average of the last n improvement values drops below 0, the early-stopping criterion is
met and no more trees are added to the ensemble.

+ Regressions that do not display net improvement early on are aborted and thus prevented from
causing useless computational workload.
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% Boosting

* Boosting is different from bagging. In boosting, we consider
the mistakes of previous predictors and train the new
predictors on those mistakes and then repeat the process

till we get a better fit.

« AdaBoost (Adaptive Boosting) [Y. Freund & R. Shapire 1995]

parallel

+ lteratively reweight your dataset, placing higher weights on the examples you are getting
wrong. At each iteration, refit and add the result to ensemble.

e © Algorithm
ek @ @_ e 1. Start by applying some method to the learning
Classifier 1 LN . . .
@ o data, where each observation is assigned an
© e equal weight.
2. Compute the predicted classifications, and
Weights L o—@ assign greater weight to those observations
Increased M. that were difficult to classify (where the
] ° misclassification rate was high), and lower
Weak Y H :
Classifier 3 ———— ?@ q' weights to thqse thaF were easy to classify
(where the misclassification rate was low).
Weak — . 3. Then apply the classifier again to the weighted
classifier 3 @\\ @ data (or with different misclassification costs),
@ -‘. . and continue with the next iteration (application
Final classifier is ! @) of the analysis method for classification to the

linear combination of
weak classifiers

re-weighted data).

= A simple example of visualizing boosting with trees.

Wesation i +  Boosting is a framework that iteratively improves any weak
6 Model Fy: learning model. In practice however, boosted algorithms
sl 1690 O ! almost always use decision trees as the base-learner.
X<1 .
¥ 4 : o yes *  Whereas random forests build an ensemble of deep
no . . . .
3 O o O independent trees, Boosting machines build an ensemble of
2 . [0 ] [oO] shallow and weak successive trees with each tree learning
Hoi o and improving on the previous.
1 2 3 4 5 6
X
Iteration 2 *  When combined, these many weak successive
6 Model Fy: trees produce a powerful “committee” that are
s| | O ] T T2 often hard to beat with other algorithms.
O O X<1 + Y>4 . .
s =g-—- yes s » Fits consecutive trees where each solves for the
no .
Y3 o: o O " net loss of the prior trees. Results of new trees
2| (o] [o][lo] [o] are applied partially to the entire solution.
u]
Hoi = * Final model is the linear combination of weak
12 )3( 4 5 6 models with weighted votes for each of the
. base models.
Iteration 3
6 Model F;:
[ [e) I
5 | o o) |I:| T1 T2 T3
X<1 + Y>4 + X<5
a-+—g—-l-
| | yes no yes no yes no
Y3
9 o 0o
2| | Lo [oJlo] [olle] [O]
12 ;'( 4 56 Scientific Reports 8:1 (2018)
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+ Gradient Boosting Machines (GBM) [J. Friedman 1999]

The basic principle is same for both AdaBoost and Gradient Boost. The differences is how the
new predictor learns from the old one.

Adaboost learns the weights of weak predictors during the learning process. It keeps adding
+ve and -ve weights to predictors about certain data points till we have predictors that can
combine to give a better result.

GBM generates predictors during the learning process. Instead of adding any weights to predictors,
wrong predicted data points are considered as a new training set and the new predictor tries to
fit these data points making a new model. It keeps fitting wrongly predicted data points with the
new predictor till lesser predictions are wrong and then use all predictors together to predict
output by voting or averaging.

GBM uses gradient descent algorithm which can
optimize any differential loss function. Each ' .ﬁ?‘;
tree in GBM is a successive gradient descent step.

GBM = Gradient Descent + Boosting
In GBM instead of reweighting used in AdaBoost, ﬁ:‘h + e
each tree is fit to the negative gradients of the

previous tree.

Basic elements of GBM: loss function, weak ooy
learner, additive model R P b

Error

Improvement of basic GBM: tree constraints, & o
shrinkage, random sampling, penalized learning R ;
(=regularization) >

Iterations

http://tvas.me/articles/2019/08/26/Block-
Distributed-Gradient-Boosted-Trees.html

% Gradient Descent (ZAI5t2 &)

Many algorithms, including decision trees, focus on minimizing the residuals and, therefore,
emphasize the mean squared error (MSE) loss function. Gradient boosting machines can be
generalized to loss functions other than MSE.

Gradient descent is a very generic optimization algorithm capable of finding optimal solutions
to a wide range of problems. The general idea of gradient descent is to tweak parameters
iteratively in order to minimize a loss function.

Suppose you are a downhill skier racing your friend. A good strategy to beat your friend to the
bottom is to take the path with the steepest slope. This is exactly what gradient descent
does - it measures the local gradient (21=71) of the loss function for a given set of parameters
and takes steps in the direction of the descending gradient.

Once the gradient is zero, we have reached the minimum.

Gradient descent can be performed on any loss function that is differentiable (0I20] Jts§t).
Consequently, this allows GBMs to optimize different loss functions as desired.

Cost

Learning step

Minimum

Random

initial value http://uc-r.github.io/gbm_regression

D>
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https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/

An important parameter in gradient descent is the size of the steps which is determined by
the learning rate (9127] 22).

Not all cost (loss) functions are convex (bowl shaped). There may be local minimas,
plateaus, and other irregular terrain of the loss function that makes finding the global minimum
difficult.

If the learning rate is too small, then the algorithm will take many iterations to find the
minimum. On the other hand, if the learning rate is too high, you might jump cross the
minimum and end up further away than when you started.

Stochastic gradient descent enables to find near the global minimum with much less iterations
by sampling a fraction of the training observations (typically without replacement) and
growing the next tree using that subsample.

S
\—-.‘ Stochastic Grodient ) _'-’.. R
’ Dﬂcrnl{SGD), A
Global Minimum 7 N ey
( Best One) e \ >
~%
w
Local Grodlent Descent

Minimum

YA

7
0’0
.

Is imputation of zero-inflated scRNA-seq data helpful for network inference?
Data smoothing based methods, MAGIC, knn-smooth and dca, generated many false-positives.

Imputation of single-cell RNA-seq data introduces circularity that can generate false-positive
results. Thus, statistical tests applied to imputed data should be treated with care.

Model-based imputation methods typically generated fewer false-positives but this varied greatly
depending on the diversity of cell-types in the sample.

SAVER was the least likely to generate false or irreproducible results, thus should be favored over

alternatives if imputation is necessary.

» False positive and true positive gene-gene correlations (p < 0.05 Bonferroni multiple
testing correction) as imputation parameters are changed.

SAVER sclmpute Drimpute
o o o o
- - - -, 020 -
-0~
© o | o 8 @
e © ]--Zo—o0—o0—o0—o S "ewos s o e
© @ _|ogem—== -== © |0-0-0-0-9° ©
=} = - a8 J==----- e
< < < _ <
o =} =} _.z20-0 IS
N N N - ’0’9 o N
[S] o S 2 ;9:, - (=]
o S g —=sg==0==D o lo - ol
S @ T T T T T 2 T T 1T T T T T 1T < T T T T T T T T
Raw 02 04 06 08 1 Raw 06 04 02 0 Raw 05 03 0.15 0.05 Raw 5 20 40 64
Percent of Genes Dropout Threshold Remaining Zeros Hidden Layer
MAGIC MAGIC knn
2 2 _o=0=0=0=g=R=9 2 p——
- T s2 26787 - _g=a=0TISR=
g 4/ & g | F
0 .
© o | /’ & Quality Scores
° ° °© 4 o TPR
3 3 3 24 o FPR
o o o / — Mean
° © ° o ~==  95% Cl
o o o -~ °
o e T T T T T T 1 e T T T T 1
Raw 10 ) 30 60 Raw 2 .3 .4 5 6 7 8 10 ) 30 60 F1000Research 7:1740 (2019)
K neighbours Diffusion time K neighbours

https://golden.com/wiki/Stochastic_gradient_descent_(SGD)




+ bigSCale method for scRNA-seq data transformation  Genome Research 28:878 (2018)
) ] ) Genome Biology 20:110 (2019)
= Step 1: Preclustering and numerical modeling

» To handle the noise and sparsity of scRNA-seq data, bigSCale method uses large sample sizes
to estimate an accurate numerical probabilistic model of noise.

* Preclustering cells into groups sharing highly similar expression profiles, which are next
treated as biological replicates to allow evaluation of the noise.

» Preclustering procedure: (1) read/count data normalization (2) log,(X +1) transformation (3)
gene normalization to avoid severe effect of highly expressed genes on clustering (4) clustering
cells with Pearson correlation and hierarchical clustering.

» Different cutting depths give different numerical models. It finds the deepest possible cut (10-
20% of total tree height in general) in the tree to ensure that only highly similar cells are
grouped together. - final clusters

+ Atthis stage, the cells within each group are treated as replicates, assuming their changes
of expression to be solely due to noise and not to biological differences.

» All within-group pairwise comparisons between cells are enumerated in order to determine
how rare/common (i.e., assigning a P-value) each combination of expression values is.
Specifically, if a cluster contains n cells, it produces C(n,2) = n*(n—1)/2 combinations of cells.
Each of these combinations contain k couples of expression values (Xcell;, Xcell,), where k is
equal to the total number of genes and Xcell;, Xcell, is the expression of a gene in the two
compared cells.

» The numerical model is robust to the different tree cut. Difference in numerical probabilistic
models between default 7% cut and forced 4% cut or 20% cut is marginal.

A PRE-CLUSTERING (PEARSON, UNSUPERVISED, 7%) NUMERICAL MODEL
(A) (Left) Default, unsupervised

heuristic sets a cut of 7% of the
total dendrogram depth, which
results in 52 pre-clusters. (Right)

3
3 The numerical model calculated
ij&ﬁﬁ « using the 52 pre-clusters. Xc1
and Xc2 represent the
expression (in a binned UMIs
7% depth [ e i e LU L S grid) of a given gene X in two
) cells c1 and c2 belonging to
the same pre-cluster.
B PRE-CLUSTERING (PEARSON, FORCED TO 4%) NUMERICAL MODEL: DELTA COMPARED TO 7%
The cumulative distribution
plot estimates the frequency,
hence likelihood, of an
s expression change.
1160 8 -
Preclusters (B-C) The difference between
the numerical model of 4% cut
4% depth i G i i MG, 1 e and 7% cut (B. Right) or 20% (C.
Right) is marginal.
cC PRE-CLUSTERING (PEARSON, FORCED TO 20%)  NUMERICAL MODEL: DELTA COMPARED TO 7%
sl
]
9
Pre-clusters
20% depth L. PR PR —

Genome Research 28:878 (2018)
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Step 2: Differential expression analysis

The numerical model of noise is used to identify differential expression (DE) between groups.

After clustering the cells to the highest feasible granularity, we used bigSCale to run an iterative
DE analysis between all pairs of clusters. For x clusters, this results in a total of x X (x = 1)/2
unigue comparisons, each yielding a Z-score for each gene that indicates the likelihood of an
expression change between two clusters.

Thus, if we started with (10 clusters) x (k genes), we end up with [45 x k] matrix of Z-scores.

Step 3: Network inference using Z-score

We then compute correlations between genes using Z-scores instead of expression values.

Therefore, linear correlations in the Z-score space can reflect non-linear correlations in
the original expression space. Hence, Pearson (or Spearman) correlation coefficient is
recommended to measure association between genes.

Genome Biology 20:110 (2019)

a b ORIGINAL DATA TRANSFORMED DATA
ORIGINAL DATA Mmp25 - Ankrd22 Mmp25 - Ankrd22
6 5
w [
na ; = p,=-0.002 2
0.8i 0.8 2 o= 0.000 g
i i S 0,=-0.001 N
D EEEETE T ’_,. g )
-1 0 Correlation 1 —CBeax hil 20 @
0 - i}
DETECTED Ip|>0.8: 24 0 UMis 4 -20 Z-score 5
ORIGINAL DATA TRANSFORMED DATA
TRANSFORMED DATA Samd9l - Cx3cr1 Samd9l - Cx3cr1
150 15 >
P p,= -0.091 o
S 0,=-0.062 g
°5 O 0.=-0.118 ?
0 N
o)
®

: -
-1 0 Correlation 1
DETECTED Ip|> 0.8 : 933'936

0 UMIs 40

(0/0]

Z-score 45

Transformed single-cell data allow detection of hidden correlations.

a. Distribution of Pearson correlations p, in normalized expression data (7697 microglia cells) or
in the Z-score space. We detect only 24 correlations |o,| > 0.8 in the first scenario, but almost
one million |po,| > 0.8 in the Z-score space.

b. Examples of correlations using either expression values or Z-score-transformed data
(o, Pearson, p, Cosine, p; Spearman). Due to drop-out events and other artifacts, the positive
correlation between Mmp25 and Ankrd22 is only exposed using Z-scores. Similarly for the
negative correlation between Samd9l and Cx3crl.

Genome Biology 20:110 (2019)
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« Benchmarking co-functional association using Bayesian statistics

.

We use Bayesian statistics to measure Likelihood of being associated.

=)
Gene Ontology (GO)
o+ | biological process
et =)
g o
g e °

et ¢ P(L|E)
e o7 @
Q )
] 8
]
=2 et |
g e | 08 06 04 -02 00 02 04 06 08
; Correlation coefficient betwen expression vectors

e
. »
.
e’ 4
3 ~P(L|E)
5 © el o)
° ® gene pairs that operate in different pathway/process
e* HKEGG pathway O gene pairs that operate in the same pathway/process
T T T

-1.0 -0.5 0.0 0.5

Correlation coefficient between expression vectors

Posterior Odds (belief after the observed data) \

Log Likelihood Scores (LLS) =In [

P(L|E)/ ~P(L|E)

1.0

Prior Expectation (Belief before the observed data)

L: linkage between two genes
E: an evidence by given data

If LLS = 0, the likelihood of two gene’s association is no better than random chance

P(L)/ ~P(L)

)

Posterior odds

N/

Prior expectation
P(L)/~P(L)

Conditional Odds Ratio = Likelihood

Logarithm

Log likelihood score

Log Likelihood Score (LLS)

® KEGG annotation
© GO annotation

o .

08 -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

fficient between ex ion vectors

Correlation

% How to make a benchmarking data set from pathway database

Collect pairs of genes that belong to the same pathway.

Use pathway annotation DBs (Gene Ontology biological process, KEGG pathway, MetaCyc, ...).

What makes a good pathway annotation DB for network modeling?

- Frequent update
- comprehensive

- Evidence codes

From pathway annotation to pathway links for network training: for example, a pathway has 4
member genes (gene A, B, C, D). Then we can make the following training samples by the

pathway

OWm> > >
I
ooO00Ow
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cumLLS

cumLLS

Coexpression network by bigSCale was compare with proportionality score
GSE99254 (~12k T cells FACS sorted from NSCLC patients)

bigSCale transformation > PCC
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+ Hypothesis generation using “static/integrated” gene/protein networks

1.

Network connectivity: Hub genes tend to be functionally more important (e.g., essential

genes)

Network propagation: Genes for the same phenotype (e.g., disease) tend to be

connected in the interactome. Thus, novel disease genes can be inferred by propagated

information from neighboring disease genes.

Subnetwork analysis: Functional or disease modules can be represented as
subnetworks of tightly connected genes

A. Network connectivity

B. Network propagation

C. Subnetwork analysis

DEGs for disease A
T
) 3 S @'
5.1 000
/Q 7 :! g -:
Dis tial () is iated
with disease A
Genome-wide —R =
screening . / ’\ s r—un(;troln:—zl Direct ® seedgene
for disease B /pr e eala neighborhood ~ Network diffusion De novo discovery Seed enrichment
\_0000 PAN

(Animal Cells and Systems. 21:1-7, 2017)
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« Hypothesis generation in single-cell network biology

1.

Hypothesis from subnetwork (co-expression module or regulon) activity analysis
1)  Co-expression modules associated with specific context or cell-type (use WGCNA)
2)  Regulon activity profiles of cell states (use SCENIC)

Hypothesis from network topology analysis
1) Changes in Centrality: Marker genes shows higher centrality in associated cell type.
2)  Changes in Neighbors (Targets):

- The lose of co—expression between cell-type specific regulators and their
normal targets causes Impairment of the cell function.

- Lineage regulators change targets in different cell types at the stage of differentiation.
3) Changes in Modularity
Hypothesis from genotype-network association

1) Co-expression QTL

% Hypothesis from subnetwork analysis

(a) Weighted correlation network analysis (WGCNA) on scRNA-seq data generally reveals multiple modules (M1-5) of
co-expressed genes with various size. Activity of modules can be measured by average gene expression level.
Module activity may significantly differ between cells from different states (e.g., cells of disease samples versus those of
healthy control), which suggest that this co-expressed module is associated with the disease state and may
contain key regulators for the disease, often those with high network centrality.

(b) Transcription factor (TF)-target interaction inference generates a set of regulons (R1-5) that are regulated genes by
each TF. Comparison of regulon activity between healthy and disease states, similarly to module activity, can suggest
its association with disease state. Then, the TF for the associated regulon is predicted to be a key regulator.

(c) These candidate regulators often go into experimental validation and gene set enrichment analysis (GSEA) for
functional interpretation.

i

d Co-expression module activity analysis

b Regulon activity analysis keyTrs O LINLLLINIIE

Key regulators O

z ¢
£ K X
b 1 !
< 1 |
a 1 |
3 |
1 1 3 :é \ X ‘ :
= L ! 2 H
M1M2 M3 M4 M5 -7 : :
: } I Experimental :
Identification of co-expressed M1 M2 M3 M4 M5 Validation of

key regulators

modules (M) by WGCNA

S o =
IRELVES TS b EINCE NN

R1 R2 [ Healthy Control GSEA
g% éé S@ [ Disease PR i H functional H
; ' a \ i interpretationof :
= = | : : regulons :
B =W e = o
| H
1

Regulon Activity

I -=- R5 . i
OTFs QO Target Genes | | | T Y o AN :

Identification of R1 R2 R3 R4 RS
TF- Regulons (R)

Cha and Lee. Exp. Mol. Med

. (2020)
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% Co-expression module associated with specific context or cell type (Nature 500:593, 2013)

* Find WGCNA coexpressed modules
from scRNA-seq from various
development stages of human embryo.

+ Measure mean expression of all genes
of a module for each context
(developmental stage).

+ Each stage can be delineated
concisely by a few modules. H

* We can identify key regulators in the
module (e.g. hub gene; TF)

WGCNA modules correspond to branches
and are labelled by colors as indicated by the
first color band underneath the tree.
Remaining color bands reveal highly
correlated (red) or anti-correlated (blue)
transcripts for the particular stage.

b. Heatmap showing relative expression of
7,313 genes in 7 representative stage-
specific modules across all samples. As
each developmental window only has one or
two highly correlated modules, the modules
were assigned biological names. Top three
representative gene ontology terms and their
associated functional enrichment P-values
are shown below.

c. Boxplots showing the distribution of module
expression (meanRPKM of all genes within
a given module) for different cell types.

Human oocyte

1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3

Height

N

Colours

AN

Human 1-cell T[T° 17

Human 2-cell

Human 4-cell

Human 8-cell

uman morula

b
Oocyte I

1-cell |

2- ceIII

4- ceII

Morula

Oocyte
Cellcycle  1.3e™
Mitosis 376 Transcription
Cytoskeleton 1.6e™

4-cell
Regulation of transcription 8.3e*
GTPase regulator activity — 6.8e™®
Non-membrane organelies 2.2e”

Membrane-enclosed lumen 6.8¢2
RNA processing/splicing

2 4e72
1.5e710

Morula
Mitochondrion

2 59’3

Ribonucleoprotein 1 Se

Translation

24

c Oocyte 4-cell 8-cell Morula
200| 200 200 200
s I o
£ 150 150 = B 150 150
& T D =
2 100} 100 Q i 100 g 100 i
B ~ -
= Bl =]
sof 80 50 a 0 GO so_éaég
0 NN i — 0 @ N N D N d 0 NS S D A 2 0
Y YN I YIS
o°$“p S ST SIS & \oq/,dévp %,d;d\

SCENIC (single-cell regulatory network inference and clustering)

Sets of genes that are coexpressed with TFs

Nature Methods 14:1083 (2017)

To overcome the high noise and sparsity of sScRNA-seq data, SCENIC uses single-cell gene
expression as well as cis-regulatory sequences. SCENIC workflow consists of 3 steps:

are identified using GENIE3 or GRNBoost.

To identify putative direct-binding targets, each coexpression module is subjected to cis-regulatory
motif analysis using RcisTarget. Only modules with significant motif enrichment of the correct

upstream regulator are retained. > Regulon

Clustering

d Tool: t-SNE ! Hierarchical clustering / ...

3. AUCell scores the activity of each regulon in each cell, thereby yielding a binarized activity
matrix with reduced dimensionality, which can be useful for downstream analyses. For
example, clustering based on this matrix identifies cell types and states based on the shared activity
of a regulatory subnetwork. Since the regulon is scored as a whole, instead of using the expression
of individual genes, this approach is robust against dropouts.

Co-expression Motif discovery Cell scoring
4 Tool: GENIE3 / GRNBoost b Tool: ReisTarget < Tool: AUCell
Cells Genel _ - (Wievz\:?r‘yy 1o x) 5 .%r: .*35‘32'3??3 1)
‘77 Gene2 s - 7 o :"0n”
Gene3 - — o m—— §§1~
8 Al
8 o — s § TF1 regulon
s Gene3 1 m— = g< N
2 ,—‘ Gened ¥ ;3’5 — | cetis wir acwve
’_ftu; i reguion 2
High expression I = . & maxAUC
Expression matrix Low expression & TF, |l AATGCTAx TF, ll ACGATCcr. (Rantrg ar:lte'zear:';mn PRI L T
Co-expression modules Regulons Regulon activity in each cell
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Gene regulatory network
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% RcisTarget

» RcisTarget is based on two steps.

1. Identification of enriched TF-binding motif across the genes of Regulon. For each TF,
RcisTarget selects DNA motifs that are significantly over-represented in the surroundings of
the transcription start site (TSS) of the target genes. This is achieved by applying a recovery-
based method on a database that contains genome-wide cross-species rankings for each
motif. The motifs that are annotated to the corresponding TF and obtain a normalized
enrichment score (NES) > 3.0 are retained.

2. Prediction of target genes by enriched motif. (i.e., genes in the target gene set that have
the enriched motif).

« Thefinal GRN = TF-target by expression patterns n TF-target by enriched motif

+ There could be negative-correlated TF modules. However, these modules are generally less
numerous and showed very low motif enrichment. For this reason, we take only positive-
correlated targets.

Tool: RcisTarget

Gene1

Co-expression modules Regulons

Gene2 ¥ -
y Transcr. regulation
@ @ Co-expression Gene3 . - @ @ _.Co-expreesgsmnl
Gene4  — - 2 :
Gene3 S | —
CICHCHCICICICRICY il wi CICICICHICD

Gene3

TF, I AATGCTA» TF, [l ACGATCcr.

s AUCell
+ AUCell can identify cells with active regulons in single-cell RNA-seq data.

» AUCell scoring method is based on a recovery analysis where the x-axis is the ranking of all
genes based on expression level (genes with the same expression value, e.g., '0', are randomly
sorted); and the y-axis is the number of genes recovered from the input set (requlon genes).

+ AUCell then uses an area under the recovery curve (AUC) to calculate whether a critical subset
of the input gene set is enriched at the top of the ranking for each cell.

* The output of this step is a matrix with the AUC score for each regulon (of each TF) in each
cell. We use either the AUC scores (across regulons) directly as continuous values to cluster
single cells, or we generate a binary matrix using a cutoff of the AUC score for each regulon.

» Clustering cells for regulon activity profiles can group cell types, suggesting that network activity
score can complement to expression data in single-cell analysis.

Recovery curve AUC histograms
” : 4 1 cel .
(each regulon in each cell) (distribution across all cells) Regulon by Cell matrix Cell groups by
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Study of cancer cell states based on regulon activity (bioRxiv https://doi.org/10.1101/715995)

Melanoma cells with a melanocytic phenotype can switch to a mesenchymal-like phenotype.

Searching for intermediate state between them and decipher their underlying GRN, regulon-based
analysis was applied on scRNA-seq of patient-derived melanoma cultures.

GRN we identified may serve as a hew putative target to prevent the switch to mesenchymal cell
state and thereby, acquisition of metastatic and drug resistant potential.

SCENIC predicts transcription factors (TFs) governing each melanoma cell state, alongside
candidate transcription factor target genes (regulon).

SCENIC yields a regulon-cell matrix with regulon activities across all single cells, and
provides therefore an alternative dimensionality reduction. A UMAP visualization based on the
regulon-cell matrix reveals three candidate cell states in an unsupervised manner, recapitulating
findings based on count-cell matrix.
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Regulon activity analysis revealed some regulons specific to each state.

The intermediate state shares several regulons with the melanocyte-like cell state or
mesenchymal-like cell state.

Some regulons are specific for intermediate state, including EGR3, RXRG and NFATC2. These
TFs have previously been linked to a more aggressive/dedifferentiated phenotype in cancer
and/or in melanoma specifically.

GSEA of EGR3 targets: vasculature development and stem cells.
GSEA of NFAT2 targets: wounding response, EMT and stemness
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% Hypothesis from network topology analysis

* Inference of co-regulatory from

Tissue samples transcriptome profiles of cells from two

er s distinct states (healthy control versus
,‘.‘.‘ scRNA-seq disease state) will construct different
Healthy control (HC) ‘ GRNs.

‘ %" - & + Genes that show changes in three types
eviTe of network topology are likely to be
‘@ - associated with the state: centrality,

Diseased (D) / \ B cell neighbors, and modularity.
) + For example, correlation analyses for
monocytes from healthy and disease
Monocyte from HC Monocyte fromD  samples may generate different network,

(healthy state) (disease state)

and changes in three types of topology
between healthy and disease states will

Healthy Monocyte Diseased Monocyte be examined for every genes.
GRN GRN

. Changes in Centrality o @)  Similarly, neMorks fo_r dlffer'ent
o @) developmental time along with topological

A Changes in Nelghbors o analysis would suggest disease-
@) oNe) associated genes, because many disease

@ Changes in Medularity e @) states are associated with defect in

(@) development.

* For example, defect in maturation of
monocyte into functional dendritic cells

Trajectory Analysis ha A
would result in immune disorders.

o “\‘nu PRASEREN
.._,,‘_M“” \
1 |
AY n
~_.7 N o P
Monocyte of mature state Late Early Monocyte of precursor state
(enriched in healthy state) B ] (enriched in disease state)
Pseudotime Cha and Lee. Exp. Mol. Med. (2020)
% Cell-type specific changes in centrality Cell Systems 9:559 (2019)

» Gene network for 6 brain cell types (astrocyte, excitatory neuron, inhibitory neuron, microglia,
oligodendrocyte, oligodendrocyte progenitor) and a global network by their integration.

* Ingeneral, marker genes do not show higher centrality than other genes (cell-type agnostic
centrality by global network). However, they exhibit a significantly higher cell-type-specific
centrality.

* Topological specificity (topS): measure of cell-type-specific centrality
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+» Cell-type specific changes in neighbors (targets)

» Tissue-resident memory CD8+ T cells (Trm) are important for anti-tumor activity.

* Lung cancer patients with EGFR mutation (EGFR-MT) do not response to cancer immunotherapy

compared with those with wild-type EGFR (EGFR-WT).

* EGFR-MT contains fewer tumor-infiltrating Trm cell than EGFR-WT, indicating that Trm cell state

is impaired in EGFR-MT.
* NOTCH-RBPJ complex is a key regulator for Trm.

* In EGFR-MT, correlations between NOTCH (or RBPJ) and genes for differentiation and

homeostasis of Trm are dysregulated.

+ The lose of co-expression between cell-type specific regulators and their normal targets

causes Impairment of the cell function.

RBPJvs RGS2
EGFR-MT

| EGFR-WT

EGFR-WT

RBPJ
* Scc 0.62 EGFR-MT

p-val: 5.2E-3 |

EGFR-WT

RBPJ vs NOTCH1 Notck1
EGFR-MT

EGFR-WT EGFR-MT

o e, \ -1 -05 0 05 1
e scc: 0.68 sce: -0.31
- p-va_l: 1.7E-3 pval: 27.7E-1

Cho et al. manuscript was submitted

+ Cell-type specific changes in neighbors (targets)

* GRNs for self-renewing cells, erythroid committed progenitors and myeloid-committed progenitors,
and demonstrated that DDIT3 changes its targets in three different GRNs.

* These results suggest that DDIT3 is a lineage regulator.
« Later, DDIT3 was experimentally validated as a lineage regulator.
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« Cell-type specific changes in modularity

Genome Res. 30:835 (2020)

+ Disease-associated genes tend to be connected by cell-type specific interactions.

« Many neurodevelopmental disorder (NDD) genes have been identified through de novo mutation
studies. However, effects of NDD genes on specific brain cell type are still elusive.

+ Co-expression enrichment (a measure of modularity) among genes for autism spectrum disorder
(ASD), epilepsy, intellectual disability (ID) and developmental delay (DD) in six different brain cell
types (neural progenitor cells, excitatory neurons, interneurons, astrocytes, oligodendrocyte
progenitor cells, microglia) were tested using scRNA-seq data and found cell-type specific effect of

NDD genes.

* The results suggest that disease genes tend to interact with cell-type-specific preference, with
preferential cell types being targeted by the different disease classes. For example, ASD and
epilepsy genes specifically effect on NPCs and interneurons, respectively.

- Cell-type-specific modularity of disease genes reveals cell-type-specific pathophysiology.

Coexpression fold enrichment
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% Hypothesis from genotype-network association
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Majority of disease-associated SNPs exert
phenotypic effect via action of expression
guantitative trait loci (eQTL) because most of them
are located within noncoding regions.

The eQTLs have long been suggested to exert its
influence in a cell-specific manner.

As scRNA-seq can provide transcriptome data for
multiple cell types of the given tissue
simultaneously, it can greatly facilitate cell-type-
specific eQTL analysis (Fig. a).

Interestingly, some eQTL effects of a gene can
be modified by expression of another gene
(Fig. b), called co-expression QTL, because they
turned out to affect co-regulatory relationship
between two genes.

For example, effect of gene X eQTL depends on
the expression of gene Y (e.g. Y is a TF for X).

Single-cell transcriptome data from each person
can be sufficient to infer gene-gene correlation,
building personalized GRN. Thus, we may test
whether personal genetic variations affect disease
risk or drug response by altering co-regulatory
interactions.

If a co-regulatory interaction between a disease
gene (X) and a drug target (Y) that affects the
disease gene activity is modulated by a co-
expression QTL, this genotype information would
be utilized in tailored prescription for individual
patients in the future (Fig. c).

Cha and Lee. Exp. Mol. Med. (2020)
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