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안녕하십니까?

한국생명정보학회의 동계 워크샵인 BIML-2021을 2월 15부터 2월 19일까지 개최합니

다. 생명정보학 분야의 융합이론 보급과 실무역량 강화를 위해 도입한 전문 교육 프

로그램인 BIML 워크샵은 2015년에 시작하였으며 올해로 7차를 맞이하게 되었습니다. 

유례가 없는 코로나 대유행으로 인해 올해의 BIML 워크숍은 온라인으로 준비했습니

다. 생생한 현장 강의에서만 느낄 수 있는 강의자와 수강생 사이의 상호교감을 가질 

수 없다는 단점이 있지만, 온라인 강의의 여러 장점을 살려서 최근 생명정보학에서 

주목받고 있는 거의 모든 분야를 망라한 강의를 준비했습니다. 또한 온라인 강의의 

한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 

BIML 워크샵은 전통적으로 크게 생명정보학과 AI, 두 개의 분야로 구성되어오고 있으

며 올해 역시 유사한 방식을 채택했습니다. AI 분야는 Probabilistic Modeling, 

Dimensionality Reduction, SVM 등과 같은 전통적인 Machine Learning부터 Deep 

Learning을 이용한 신약개발 및 유전체 연구까지 다양한 내용을 다루고 있습니다. 생

명정보학 분야로는, Proteomics, Chemoinformatics, Single Cell Genomics, Cancer 

Genomics, Network Biology, 3D Epigenomics, RNA Biology, Microbiome 등 거의 모

든 분야가 포함되어 있습니다. 연사들은 각 분야 최고의 전문가들이라 자부합니다. 

이번 BIML-2021을 준비하기까지 너무나 많은 수고를 해주신 BIML-2021 운영위원회

의 김태민 교수님, 류성호 교수님, 남진우 교수님, 백대현 교수님께 커다란 감사를 드

립니다. 또한 재정적 도움을 주신, 김선 교수님 (AI-based Drug Discovery), 류성호 교

수님, 남진우 교수님께 감사를 표시하고 싶습니다. 마지막으로 부족한 시간에도 불구

하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 강의자료를 만드는데 노력하셨을 뿐만 

아니라 실시간 온라인 Q&A 세션까지 참여해 수고해 주시는 모든 연사분들께 깊이 

감사드립니다. 

2021년 2월 

한국생명정보학회장 김동섭



강의개요 

  

Single-cell Network Biology 

 

최근 급속히 발전하고 있는 단일세포오믹스(single-cell omics) 기술들은 유전체연구의 

패러다임을 바꾸고 있다. 특히 단일세포 수준에서 전사체 및 후성유전체의 활성 

정보는 다양한 세포들이 섞여있는 조직(tissue) 및 기관(organ) 내에 존재하는 

세포들의 유형별 기능과 이들 사이의 기능적 상호관계를 더 정확하게 이해할 수 

있는 기회를 제공하고 있다. 

단일세포오믹스는 cellular heterogeneity의 문제를 해결하였을 뿐 아니라 세포 

유형특이적(celltype-specific) 혹은 개인별(personal) 유전자조절네트워크(gene 

regulatory network or GRN)의 모델링을 가능하게 할 수 있다. 다차원 유전자 발현 

데이터에 존재하는 변이(variance)를 기반으로 하는 기존 알고리즘들을 bulk RNA 

sequencing 정보에 적용해 GRN을 구축하기 위해서는 연구대상 샘플에 대한 많은 

수의 transcriptome profiling을 수행해야 했다. 하지만 single-cell RNA sequencing 

(scRNA-seq)은 단일 실험에 수백-수천의 세포에 대한 transcriptome profile data를 

생산하여 cell-to-cell variance를 이용한 GRN 구축이 이론적으로 가능하다. 그러므로 

각 개인별 세포유형특이적인 GRN을 구축하여 보다 높은 해상도로 주어진 세포 

환경에 보다 특이적인 유전자 조절 프로그램을 연구할 수 있다. 본 강좌는 scRNA-

seq 데이터로부터 GRN을 구축 및 해석할 수 있는 능력을 배양하도록 도와줄 것이다. 
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Single-cell Network Biology

이인석 (연세대학교)

KSBi-BIML
2021

본강의 자료는 한국생명정보학회가 주관하는 KSBi-BIML 

2021 워크샵 온라인 수업을 목적으로 제작된것으로 해당

목적 이외의 다른 용도로 사용할 수없음을 분명하게 알립니

다.  수업 목적으로 배포 및 전송 받은 경우에도 이를 다른

사람과 공유하거나 복제, 배포, 전송할 수없습니다. 

만약 이러한 사항을 위반할 경우 발생하는 모든 법적 책임은

전적으로 불법 행위자 본인에게 있음을 경고합니다.
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❖ Why single-cell network biology?

• The major aim of single-cell biology is understanding cellular heterogeneity.

• Cell-type-specific phenotypes are governed by activity of cell-type-specific regulators and 

target programs (i.e. cell-type specific gene expression programs).

• Gene expression programs are mainly mediated by transcriptional regulatory programs 

(=transcriptional regulatory networks).

• Therefore, deciphering gene regulatory network (GRN) will facilitate understanding cellular 

heterogeneity.  

• Currently we can link only ~60% of the disease-associated non-coding SNPs in regulatory 

elements to an eQTL effect. Because many of the eQTL may have cell-type-specific regulatory 

effects (eQTL analysis was traditionally conducted with tissue samples).

• Therefore, understanding mechanisms of disease genetics needs cell-type-specific GRN.

• Furthermore, single-cell gene expression data allow to generate GRN for individuals

(personalized GRN), which may facilitate implementation of precision medicine in the future.

Integrated network for heterogeneous 

cell-types and population.

Single-cell data for each cell-type

and individual.

Cell-type-specific and personalized 

GRNs

Specifying context

❖ Network inference from single-cell transcriptome data

• Larger numbers of data points (>1000’s cells in general) yield higher statistical power.

• Cell-type-specific transcriptome data contains signals based on cell-state variation that 

provides cell-type-specific pathway links more than compositional variation.

• Regulatory relationship can be inferred by cell-to-cell variation within a single person 

(i.e. personal network).

➢ Pros

➢ Cons

• High noise and sparsity (dropout): cause high proportion of false positive links

❖ Types of single-cell gene networks

• Single-cell Gene Regulatory Network (directional links)

• Single-cell Co-regulatory (or co-expression) Network (peer-to-peer links)

❖ Approaches to single-cell network inference

• Statistical approaches: Correlation; Mutual information

• Machine learning: Random forest; Gradient boosting machine

• Data preprocessing: Dropout imputation; Transformation
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❖ Cell-state variation vs compositional variation with bulk tissue RNA-seq data

• Schematic of cellular composition effects on gene expression 

variance in bulk tissue. 

• Top: Cell type (CT) profiles for five genes in a hypothetical 

tissue with two cell types. Genes 1 and 2 are marker genes for 

cell type B. Gene 3 is a marker gene for cell type A. Gene 4 is 

expressed in both cell types but at different levels, whereas 

Gene 5 is expressed at equal levels.

• Middle: Hypothetical cellular compositions of five bulk tissue 

samples. Each sample αi has the same amount of biological 

material but different proportions of each cell type. 

• Bottom: The expected observed expression levels. Genes 1 and 

2 are positively correlated and negatively correlated with Genes 

3 and 4. Gene 5 is expressed at the same level in all the bulk 

tissue samples as it is equally expressed in all cell types.

Genome Res. 30:849 (2020)

• Genes that have similar expression patterns across 

cell types will have correlated RNA levels in bulk 

tissue, due to the effect of variation in cellular 

composition.

• Much bulk tissue expression is explained by cellular 

composition variation among samples, rather than 

intra-cell-type regulatory relationships.

• Dominant cellular composition-induced co-expression 

mask underlying within-cell co-regulatory links in bulk 

RNA-seq data.

• Thus, we may need co-expression analysis using 

scRNA-seq data to map within-cell coregulatory links.

❖ Network inference with bulk RNA-seq vs scRNA-seq

Cha and Lee. Exp. Mol. Med. (2020)

(a) In network inference with bulk RNA-seq, correlation between genes by variation of cell-type composition across 

tissue samples is dominant. Thus, network is mostly composed of cell-type composition-induced co-expression. 

(b) In network inference with scRNA-seq, using gene-by-cell count matrix for each cell type, we can infer networks mainly 

composed of within-cell co-regulatory links. 
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❖ Single-cell Gene Regulatory Network from scRNA-seq data

• Most GRN modeling methods developed for scRNA-seq data requires the cells to be ordered by 

pseudotime in the input data.

• For example, LEAP (Bioinformatics 33:764, 2017) applies Pearson’s correlation over temporal 

window of a fixed size with different time lags.

• Others are SINCERITIES (Bioinformatics 34:258, 2018), SCODE (Bioinformatics 33:2314, 2017)

• Then, network inferences will rely on the quality of pseudotime analysis of scRNA-seq data: 

“robustness issue”.

➢ GRN inference methods using pseudotime ordered cells

• Boolean models focus on logical combination of TFs required to transit from one state to 

another in dynamic process, resulting in state-graph for key TFs involved in state changes. 

• However, it does not provide target information and computational demands increase rapidly 

with network size because of high-dimensional parameter spaces. (thus generally used for 

network with <100 genes): “scalability issue” 

➢ GRN inference methods based on Boolean models

• GRN inference from transcriptome data relies on the assumption that regulatory information 

can be extracted from the expression pattern.

✓ We prefer GRN inference methods which are robust and scalable to any single-cell transcriptome 

data: Partial correlation (calculated by R package PPCOR), PIDC, GENIE3 and GRNBoost

➢ Benchmarking GRN inferences from scRNA-seq data Nature Methods 17:147 (2020)

• In recent benchmarking based on scRNA-seq data from human and mouse, the GRN inference 

methods with no requirement for time-ordered cells were all top ranked in terms of accuracy. 

• Since PIDC, GENIE3, GRNBoost2, and PPCOR do not require pseudotime-ordered cells, they are 

immune to any errors in pseudotime computation.
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➢ Benchmarking GRN inferences from scRNA-seq data Nature Methods 17:147 (2020)

• MI (mutual information); RF (random forest); BT (boosting); Corr (correlation);

• GENIE3 (RF) and GRNBoost2 (BT) infer directional edges (TF → target), whereas PPCOR (Corr) 

and PIDC (MI) infer unidirectional edges.

• PPCOR is fast but shows the lowest accuracy.

• PIDC is fast and shows the highest accuracy.

• GENIE3 and GRNBoost2 show relatively high accuracy, but GENIE3 is very slow for >1000 cells.

• GENIE3 and PIDC also had better stability across multiple runs, whereas GRNBoost2 was less 

sensitive to the presence of dropouts.

• Since GRNBoost2 and GENIE3 have multithreaded implementations now, they are as fast as PIDC.

• The principle underlying correlation networks is that if two genes have highly-correlated 

expression patterns (i.e. they are co-expressed), then they are assumed to participate 

together in a regulatory interaction. 

• It is important to highlight that co-expressed genes are indicative of an interaction but 

this is not a necessary and sufficient condition. Partial correlation is a measure of the 

relationship between two variables while controlling for the effect of other variables.

• In complex system, processes often interdependent. For example, the abundance of 

clouds is often correlated with the amount of aerosol particles in the atmosphere.

• But both are also correlated with wind speed. Wind speed might be a “mediating” or 

“confounding” variable.

• Here we want to test for an association two variables after controlling for the effect of 

one or more potentially confounding variables.

• Correlation coefficient is adjusted for correlations between each variable (A, B) and 

potential confounding variable C. 

❖ Partial Correlation

𝑟𝐴𝐵 − 𝑟𝐴𝐶𝑟𝐵𝐶

1 − 𝑟2𝐴𝐶 1 − 𝑟2𝐵𝐶
rAB.C =

• Null hypothesis: there is no association between the two variables after controlling for effects 

of confounding variable(s).

• Therefore the presence of an edge between A and B indicates that a correlation exists between 

A and B regardless of which other nodes are being conditioned on.
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• Venn Diagram explanation

Variance in 

variable A
Variance in 

variable B

Variance in variable C

Variance in variable B 

accounted for by variable A 

after removing effects of 

variable C (confounding 

variable): Partial correlation

• Typically, gene expression profiles from single cell data follow multimodal distribution rather 

than a unimodal continuous shape. Therefore, Pearson correlation coefficient are less suited 

for single cell expression data because this metric measures a linear dependency between two 

variables.

• Given the non-linear nature of single cell gene expression data, nonparametric methods such as 

the Spearman correlation and Kendall rank correlation coefficients are more appropriate. 

• It also computes a p-value for each correlation.

• Since these values are symmetric, this method yields an undirected regulatory network. 

• We use the sign of the correlation, which is bounded between -1 and 1, to signify whether an 

interaction is inhibitory (negative) or activating (positive).

Variance in variable B 

accounted for by variable A

: Correlation

➢ Benchmarking metrics for gene-gene association with scRNA-seq data

Functional coherence of scRNA-seq co-

regulatory networks (213 datasets).

• All perform very poor, although measures of 

proportionality between two variables work best.

Nat. Methods 16:381 (2019)
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• Mutual information (MI) measure has advantages over correlation measure, as it can capture 

complex non-linear and non-monotonic dependencies.

• Calculating MI involves estimating pairwise joint probability distributions, generally requiring 

density estimation or data discretization, and the accuracy of these estimates depends on the 

sample sizes. 

• The entropy, H(X), quantifies the uncertainty in the probability distribution, p(x), of a random 

variable X. For a discrete random variable, 

• MI between two random variables X and Y;  I(X;Y) =  H(X) + H(Y) – H(X, Y), where H(X, Y) is the 

joint entropy assuming independence of X and Y.

• For a pair of co-regulated genes, their observed H(X, Y) is lower, and have higher MI.

• Single-cell datasets are sufficiently large to allow us to accurately estimate probability distributions 

between more than two variables based on multivariate information (MVI) theory.

• MVI measure improves accuracy of estimated information dependency.

• Partial information decomposition (PID) enables to provide a meaningful measure of MVI.

• PID considers the information provided by a set of source variables (or genes), S = {X, Y}, about 

another target variable, Z, partitioned into redundant, synergistic, and unique information.

• I(Z; X, Y) = Synergy(Z; X, Y) + Uniquex(Z; Y) + UniqueY(Z; X) + Redundancy(Z; X, Y) 

• Redundant information is the portion of information about Z that can be provided by either 

variable in S alone; 

• Unique information from X (or Y) is the portion of information provided only by X (or only Y)

• Synergistic information is the portion of information that is only provided by knowledge of 

both X and Y.

❖ PIDC (Partial Information Decomposition and Context) Cell Syst. 2017;5(3):251–67. e3

• PIDC outperforms pairwise MI-based algorithms.

• The larger sample sizes of single-cell data are vital 

for PIDC-based network inference.

1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Below two profile pairs have same Euclidean distance. However…

For marginal entropy, P(0) = 0, P(1) = 1

H(X) = -(0*log2(0))-(1*log2(1)) = 0: low complexity of each random variable

H(Y) = H(X)

For joint entropy, P(0,0) = 0, P(0,1) = 0, P(1,0) = 0, P(1,1) = 1 

H(X,Y) = -(0*log2(0))-(0*log2(0))-(0*log2(0))-(1*log2(1)) = 0: low complexity of joint incident 

Thus M(X,Y) = 0+0-0 = 0.

For marginal entropy, P(0) = 0.5, P(1) = 0.5

H(X) = -(1/2*log2(1/2))-(1/2*log2(1/2)) = 0.5 + 0.5 = 1: 

H(Y) = H(X)

For joint entropy, P(0,0) = 0.5, P(0,1) = 0, P(1,0) = 0, P(1,1) = 0.5 

H(X,Y) = -(1/2*log2(1/2))-(0*log2(0))-(0*log2(0))-(1/2*log2(1/2)) = 0.5+0.5 = 1:

Thus M(X,Y) = 1+1-1 = 1.

➢ Examples of MI calculation
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❖ Network inference based on PID and Context

• In a network of n genes, given a pair of genes X and Y, there are n − 2 gene triplets involving the 

pair. The MI between X and Y, I(X;Y) is unaffected by the choice of the third gene, Z, because MI is 

a pairwise measure, but UniqueZ(X;Y), varies depending on Z.

• The ratio UniqueZ(X;Y)/I(X;Y) is the proportion of MI that is accounted for by unique information 

between X and Y. This ratio would be higher if X and Y are connected.

• Proportion of unique contribution (PUC) between two genes X and Y as the sum of this ratio 

calculated using every other gene Z in a network.

• For network inference, the redundancy and unique information contributions are first estimated for 

every gene triplet, then the PUC is calculated for each pair of genes in the network. 

• Finding a threshold for defining an edge at 

this stage is problematic, because the 

distributions of PUC scores differ 

between genes, thus setting a global 

threshold for PUC scores across the whole 

network risks biasing the results by factors 

such as expression variability. 

• Therefore, confidence of an edge that 

takes into account the network context is 

used.

• where FX(U) is the cumulative distribution 

function of all the PUC scores involving 

gene X.

• The resulting network is undirected since the 

proportional unique contribution is symmetric.

• GENIE3 is a GRN inference method based on variable selection with ensembles of regression 

trees. In each of the regression problems, the expression pattern of one of the genes (target 

gene) is predicted from the expression patterns of all the other genes (input genes), using 

tree-based ensemble methods Random Forests (RF). 

• The importance of an input gene in the prediction of the target gene expression pattern is 

taken as an indication of a putative regulatory link. 

• Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from 

which the whole network is reconstructed.

• Tree-based ensemble methods doesn't make any assumption about the nature of gene regulation, 

can potentially capture high-order conditional dependencies between expression patterns.

• Importantly, GENIE3 produces directed GRNs, and naturally allows for the presence of feedback 

loops in the network. It is also fast and scalable.

• A network inference algorithm was defined as a procedure that exploits a set of gene expression 

vectors to assign weights to putative regulatory links from any gene i to any gene j, with the 

aim of yielding large values for weights which correspond to actual regulatory interactions.

• Exploiting expression data, the identification of the regulatory genes for a given target gene is 

defined as determining the subset of genes whose expression directly influences or is 

predictive of the expression of the target gene. 

➢ Therefore, here the network inference problem is equivalent to a feature selection problem. 

• Importantly, variable (i.e., gene) importance can be computed from a tree that allows to rank the 

input features according to their relevance for predicting the output. GENIE3 uses a measure which 

at each test node computes the total reduction of the variance of the output variable due to the split. 

❖ GENIE3 (GEne Network Inference with Ensemble of trees) PLoS ONE 5(9): e12776 (2010)
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1. For each gene j = 1, … ,p, a learning sample LSj is generated with expression levels of j as output 

values and expression levels of all other genes as input values. 

2. A function fj is learned (with RF) from LSj and a local ranking of all genes except j is computed. 

3. The p local rankings are then aggregated to get a global ranking of all regulatory links.

• The overall importance of one variable is computed by summing the importance values of all 

tree nodes where this variable is used to split. Those attributes that are not selected at all obtain 

a zero value of their importance, and those that are selected close to the root node of the tree 

typically obtain high scores. 

• Attribute importance measures can be easily extended to ensembles, simply by averaging 

importance scores over all trees in the ensemble.

▪ GENIE3 procedure

• Goal: to combine weak models (classifiers or regressions) into a final model that has a better 

generalization performance than the individual models.

▪ Ensemble method

❖ Ensemble Learning

• Ensemble methods use multiple learning algorithms (e.g., decision tree, logistic regression, etc) 

to obtain better predictive performance.

• Two major types of ensemble learning approaches: Bagging and Boosting

❖ Bagging (L. Breiman, 1994)

• Building multiple models (e.g., 

classifiers C1, C2, …, Cm) on the 

same learner using bootstrap 

samples of the original training 

sets (T1, T2, …, Tm) →

Aggregating prediction results 

(e.g., majority voting in 

classification) for the final model
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❖ Random Forests

• A popular ensemble learner with bagging approach

• Combining individual trees (weak learners) to build random forests (strong learner)

− Maximum depth of the tree: d

− The number of trees in the forest: k

▪ Steps

▪ Pros and Cons

• Draw a random bootstrap sample of size n (choose n random samples out of total n samples 

with replacement)

• Make weak decision trees from the bootstrap samples with two hyperparameters:

• Split input data using the best feature to 

maximize the information gain.

• Repeat above steps for d features for k trees

• Aggregate the prediction of each tree 

by majority voting (in classification) or

averaging (variable weight scores in 

regression)

• Don't need to prune the random forest in general, since the ensemble model is quite robust to 

the noise from individual decision trees

• The larger the number of trees k, the better the performance of the random forest

• Large computational cost for large k

• GRNBoost is based on the same concept as GENIE3 but using the gradient-boosting machines 

(GBM). Boosting is an ensemble learning strategy. 

• GRNBoost uses stumps (regression trees of depth 1) as the base learner. 

❖ GRNBoost Nature Methods 14:1083 (2017)

❖ GRNBoost2 Bioinformatics 35:2159 (2019)

• GRNBoost2 employs a regularized stochastic variation on GBMs. It equips GBM regressions with 

a heuristic early-stopping regularization strategy using out-of-bag improvement estimates. 

• Each new decision tree is trained in function of a random subset of observations (90%, hence 

stochastic), whereas the remaining (10%, out-of-bag) observations are used to calculate an 

estimate of the loss function improvement entailed by adding that tree to the ensemble. 

• When the average of the last n improvement values drops below 0, the early-stopping criterion is 

met and no more trees are added to the ensemble. 

• Regressions that do not display net improvement early on are aborted and thus prevented from 

causing useless computational workload.
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❖ Boosting

• Boosting is different from bagging. In boosting, we consider 

the mistakes of previous predictors and train the new 

predictors on those mistakes and then repeat the process 

till we get a better fit.

❖ AdaBoost (Adaptive Boosting) [Y. Freund & R. Shapire 1995]

• Iteratively reweight your dataset, placing higher weights on the examples you are getting 

wrong.  At each iteration, refit and add the result to ensemble.

Algorithm

1. Start by applying some method to the learning 

data, where each observation is assigned an 

equal weight. 

2. Compute the predicted classifications, and 

assign greater weight to those observations 

that were difficult to classify (where the 

misclassification rate was high), and lower 

weights to those that were easy to classify 

(where the misclassification rate was low). 

3. Then apply the classifier again to the weighted 

data (or with different misclassification costs), 

and continue with the next iteration (application 

of the analysis method for classification to the 

re-weighted data). 

▪ A simple example of visualizing boosting with trees.

Scientific Reports 8:1 (2018)

• Boosting is a framework that iteratively improves any weak 

learning model. In practice however, boosted algorithms 

almost always use decision trees as the base-learner.

• Whereas random forests build an ensemble of deep 

independent trees, Boosting machines build an ensemble of 

shallow and weak successive trees with each tree learning 

and improving on the previous. 

• When combined, these many weak successive 

trees produce a powerful “committee” that are 

often hard to beat with other algorithms.

• Fits consecutive trees where each solves for the 

net loss of the prior trees. Results of new trees 

are applied partially to the entire solution.

• Final model is the linear combination of weak 

models with weighted votes for each of the 

base models. 
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❖ Gradient Boosting Machines (GBM) [J. Friedman 1999]

• The basic principle is same for both AdaBoost and Gradient Boost. The differences is how the 

new predictor learns from the old one.

• Adaboost learns the weights of weak predictors during the learning process. It keeps adding 

+ve and -ve weights to predictors about certain data points till we have predictors that can 

combine to give a better result. 

• GBM generates predictors during the learning process. Instead of adding any weights to predictors, 

wrong predicted data points are considered as a new training set and the new predictor tries to 

fit these data points making a new model. It keeps fitting wrongly predicted data points with the 

new predictor till lesser predictions are wrong and then use all predictors together to predict 

output by voting or averaging.

• GBM uses gradient descent algorithm which can 

optimize any differential loss function. Each 

tree in GBM is a successive gradient descent step.

• GBM  = Gradient Descent + Boosting

• In GBM instead of reweighting used in AdaBoost, 

each tree is fit to the negative gradients of the 

previous tree.

• Basic elements of GBM: loss function, weak 

learner, additive model

• Improvement of basic GBM: tree constraints, 

shrinkage, random sampling, penalized learning 

(=regularization)  

http://tvas.me/articles/2019/08/26/Block-

Distributed-Gradient-Boosted-Trees.html

❖ Gradient Descent (경사하강법)

http://uc-r.github.io/gbm_regression

• Many algorithms, including decision trees, focus on minimizing the residuals and, therefore, 

emphasize the mean squared error (MSE) loss function. Gradient boosting machines can be 

generalized to loss functions other than MSE.

• Gradient descent is a very generic optimization algorithm capable of finding optimal solutions 

to a wide range of problems. The general idea of gradient descent is to tweak parameters 

iteratively in order to minimize a loss function. 

• Suppose you are a downhill skier racing your friend. A good strategy to beat your friend to the 

bottom is to take the path with the steepest slope. This is exactly what gradient descent 

does - it measures the local gradient (기울기) of the loss function for a given set of parameters 

and takes steps in the direction of the descending gradient. 

• Once the gradient is zero, we have reached the minimum.

• Gradient descent can be performed on any loss function that is differentiable (미분이가능한). 

Consequently, this allows GBMs to optimize different loss functions as desired.
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• An important parameter in gradient descent is the size of the steps which is determined by 

the learning rate (기울기보폭). 

• Not all cost (loss) functions are convex (bowl shaped). There may be local minimas, 

plateaus, and other irregular terrain of the loss function that makes finding the global minimum 

difficult. 

• If the learning rate is too small, then the algorithm will take many iterations to find the 

minimum. On the other hand, if the learning rate is too high, you might jump cross the 

minimum and end up further away than when you started.

• Stochastic gradient descent enables to find near the global minimum with much less iterations

by sampling a fraction of the training observations (typically without replacement) and 

growing the next tree using that subsample. 

https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/ https://golden.com/wiki/Stochastic_gradient_descent_(SGD)

❖ Is imputation of zero-inflated scRNA-seq data helpful for network inference?

F1000Research 7:1740 (2019)

• Data smoothing based methods, MAGIC, knn-smooth and dca, generated many false-positives. 

• Imputation of single-cell RNA-seq data introduces circularity that can generate false-positive 

results. Thus, statistical tests applied to imputed data should be treated with care. 

• Model-based imputation methods typically generated fewer false-positives but this varied greatly 

depending on the diversity of cell-types in the sample. 

• SAVER was the least likely to generate false or irreproducible results, thus should be favored over 

alternatives if imputation is necessary.

➢ False positive and true positive gene-gene correlations (p < 0.05 Bonferroni multiple 

testing correction) as imputation parameters are changed.
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❖ bigSCale method for scRNA-seq data transformation Genome Research 28:878 (2018) 

Genome Biology 20:110 (2019)

• To handle the noise and sparsity of scRNA-seq data, bigSCale method uses large sample sizes 

to estimate an accurate numerical probabilistic model of noise. 

• Preclustering cells into groups sharing highly similar expression profiles, which are next 

treated as biological replicates to allow evaluation of the noise. 

• Preclustering procedure: (1) read/count data normalization (2) log10(X +1) transformation (3) 

gene normalization to avoid severe effect of highly expressed genes on clustering  (4) clustering 

cells with Pearson correlation and hierarchical clustering. 

• Different cutting depths give different numerical models. It finds the deepest possible cut (10-

20% of total tree height in general) in the tree to ensure that only highly similar cells are 

grouped together. → final clusters

• At this stage, the cells within each group are treated as replicates, assuming their changes 

of expression to be solely due to noise and not to biological differences. 

• All within-group pairwise comparisons between cells are enumerated in order to determine 

how rare/common (i.e., assigning a P-value) each combination of expression values is. 

Specifically, if a cluster contains n cells, it produces C(n,2) = n*(n−1)/2 combinations of cells. 

Each of these combinations contain k couples of expression values (Xcell1, Xcell2), where k is 

equal to the total number of genes and Xcell1, Xcell2 is the expression of a gene in the two 

compared cells. 

• The numerical model is robust to the different tree cut. Difference in numerical probabilistic 

models between default 7% cut and forced 4% cut or 20% cut is marginal.   

▪ Step 1: Preclustering and numerical modeling

(A) (Left) Default, unsupervised 

heuristic sets a cut of 7% of the 

total dendrogram depth, which 

results in 52 pre-clusters. (Right) 

The numerical model calculated 

using the 52 pre-clusters. Xc1 

and Xc2 represent the 

expression (in a binned UMIs

grid) of a given gene X in two 

cells c1 and c2 belonging to 

the same pre-cluster. 

The cumulative distribution 

plot estimates the frequency, 

hence likelihood, of an 

expression change.

(B-C) The difference between 

the numerical model of 4% cut 

and 7% cut (B. Right) or 20% (C. 

Right) is marginal.

Genome Research 28:878 (2018)
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• The numerical model of noise is used to identify differential expression (DE) between groups.

• After clustering the cells to the highest feasible granularity, we used bigSCale to run an iterative 

DE analysis between all pairs of clusters. For x clusters, this results in a total of x × (x − 1)/2 

unique comparisons, each yielding a Z-score for each gene that indicates the likelihood of an 

expression change between two clusters.

• Thus, if we started with (10 clusters) × (k genes), we end up with [45 × k] matrix of Z-scores. 

▪ Step 2: Differential expression analysis

• We then compute correlations between genes using Z-scores instead of expression values.

• Therefore, linear correlations in the Z-score space can reflect non-linear correlations in 

the original expression space. Hence, Pearson (or Spearman) correlation coefficient is 

recommended to measure association between genes.

▪ Step 3: Network inference using Z-score 

Genome Biology 20:110 (2019)

Transformed single-cell data allow detection of hidden correlations.

a. Distribution of Pearson correlations ρp in normalized expression data (7697 microglia cells) or 

in the Z-score space. We detect only 24 correlations |ρp| > 0.8 in the first scenario, but almost 

one million |ρp| > 0.8 in the Z-score space.

b. Examples of correlations using either expression values or Z-score-transformed data 

(ρp Pearson, ρc Cosine, ρs Spearman). Due to drop-out events and other artifacts, the positive 

correlation between Mmp25 and Ankrd22 is only exposed using Z-scores. Similarly for the 

negative correlation between Samd9l and Cx3cr1.
Genome Biology 20:110 (2019)
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❖ Benchmarking co-functional association using Bayesian statistics 

• We use Bayesian statistics to measure Likelihood of being associated.

Posterior Odds (belief after the observed data)

Prior Expectation (Belief before the observed data)

L: linkage between two genes

E: an evidence by given data

If LLS = 0, the likelihood of two gene’s association is no better than random chance

❖ How to make a benchmarking data set from pathway database

• Collect pairs of genes that belong to the same pathway.

• Use pathway annotation DBs (Gene Ontology biological process, KEGG pathway, MetaCyc, …).

• What makes a good pathway annotation DB for network modeling?

- Frequent update

- comprehensive

- Evidence codes

• From pathway annotation to pathway links for network training: for example, a pathway has 4 

member genes (gene A, B, C, D). Then we can make the following training samples by the 

pathway

A – B

A – C

A – D

B – C

B – D 

C – D 
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➢ Coexpression network by bigSCale was compare with proportionality score

GSE99254 (~12k T cells FACS sorted from NSCLC patients) 

• bigSCale transformation → PCC

• Standard preprocessed data → Proportionality

❖ Hypothesis generation using “static/integrated” gene/protein networks

1. Network connectivity: Hub genes tend to be functionally more important (e.g., essential 

genes)

2. Network propagation: Genes for the same phenotype (e.g., disease) tend to be 

connected in the interactome. Thus, novel disease genes can be inferred by propagated 

information from neighboring disease genes.

3. Subnetwork analysis: Functional or disease modules can be represented as 

subnetworks of tightly connected genes

(Animal Cells and Systems. 21:1-7, 2017) 
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❖ Hypothesis generation in single-cell network biology

1. Hypothesis from subnetwork (co-expression module or regulon) activity analysis

1) Co-expression modules associated with specific context or cell-type (use WGCNA)

2) Regulon activity profiles of cell states (use SCENIC)

2. Hypothesis from network topology analysis

1) Changes in Centrality: Marker genes shows higher centrality in associated cell type. 

2) Changes in Neighbors (Targets): 

- The lose of co-expression between cell-type specific regulators and their 
normal targets causes Impairment of the cell function. 

- Lineage regulators change targets in different cell types at the stage of differentiation.

3) Changes in Modularity

3. Hypothesis from genotype-network association

1) Co-expression QTL

❖ Hypothesis from subnetwork analysis

Cha and Lee. Exp. Mol. Med. (2020)

(a) Weighted correlation network analysis (WGCNA) on scRNA-seq data generally reveals multiple modules (M1-5) of 

co-expressed genes with various size. Activity of modules can be measured by average gene expression level. 

Module activity may significantly differ between cells from different states (e.g., cells of disease samples versus those of 

healthy control), which suggest that this co-expressed module is associated with the disease state and may 

contain key regulators for the disease, often those with high network centrality. 

(b) Transcription factor (TF)-target interaction inference generates a set of regulons (R1-5) that are regulated genes by 

each TF. Comparison of regulon activity between healthy and disease states, similarly to module activity, can suggest 

its association with disease state. Then, the TF for the associated regulon is predicted to be a key regulator. 

(c) These candidate regulators often go into experimental validation and gene set enrichment analysis (GSEA) for 

functional interpretation.
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a. WGCNA modules correspond to branches 

and are labelled by colors as indicated by the 

first color band underneath the tree. 

Remaining color bands reveal highly 

correlated (red) or anti-correlated (blue) 

transcripts for the particular stage. 

b. Heatmap showing relative expression of 

7,313 genes in 7 representative stage-

specific modules across all samples. As 

each developmental window only has one or 

two highly correlated modules, the modules 

were assigned biological names. Top three 

representative gene ontology terms and their 

associated functional enrichment P-values 

are shown below. 

c. Boxplots showing the distribution of module 

expression (meanRPKM of all genes within 

a given module) for different cell types.

❖ Co-expression module associated with specific context or cell type (Nature 500:593, 2013)

• Find WGCNA coexpressed modules 

from scRNA-seq from various 

development stages of human embryo.

• Measure mean expression of all genes 

of a module for each context 

(developmental stage).

• Each stage can be delineated 

concisely by a few modules.

• We can identify key regulators in the 

module (e.g. hub gene; TF)

• To overcome the high noise and sparsity of scRNA-seq data, SCENIC uses single-cell gene 

expression as well as cis-regulatory sequences. SCENIC  workflow consists of 3 steps:

1. Sets of genes that are coexpressed with TFs are identified using GENIE3 or GRNBoost.

2. To identify putative direct-binding targets, each coexpression module is subjected to cis-regulatory 

motif analysis using RcisTarget. Only modules with significant motif enrichment of the correct 

upstream regulator are retained. → Regulon

3. AUCell scores the activity of each regulon in each cell, thereby yielding a binarized activity 

matrix with reduced dimensionality, which can be useful for downstream analyses. For 

example, clustering based on this matrix identifies cell types and states based on the shared activity 

of a regulatory subnetwork. Since the regulon is scored as a whole, instead of using the expression 

of individual genes, this approach is robust against dropouts.

❖ SCENIC (single-cell regulatory network inference and clustering) Nature Methods 14:1083 (2017)
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❖ RcisTarget

• RcisTarget is based on two steps. 

1. Identification of enriched TF-binding motif across the genes of Regulon. For each TF, 

RcisTarget selects DNA motifs that are significantly over-represented in the surroundings of 

the transcription start site (TSS) of the target genes. This is achieved by applying a recovery-

based method on a database that contains genome-wide cross-species rankings for each 

motif. The motifs that are annotated to the corresponding TF and obtain a normalized 

enrichment score (NES) > 3.0 are retained. 

2. Prediction of target genes by enriched motif. (i.e., genes in the target gene set that have 

the enriched motif).

• The final GRN = TF-target by expression patterns ∩ TF-target by enriched motif

• There could be negative-correlated TF modules. However, these modules are generally less 

numerous and showed very low motif enrichment. For this reason, we take only positive-

correlated targets.

❖ AUCell

• AUCell can identify cells with active regulons in single-cell RNA-seq data. 

• AUCell scoring method is based on a recovery analysis where the x-axis is the ranking of all 

genes based on expression level (genes with the same expression value, e.g., '0', are randomly 

sorted); and the y-axis is the number of genes recovered from the input set (regulon genes). 

• AUCell then uses an area under the recovery curve (AUC) to calculate whether a critical subset 

of the input gene set is enriched at the top of the ranking for each cell. 

• The output of this step is a matrix with the AUC score for each regulon (of each TF) in each 

cell. We use either the AUC scores (across regulons) directly as continuous values to cluster 

single cells, or we generate a binary matrix using a cutoff of the AUC score for each regulon. 

• Clustering cells for regulon activity profiles can group cell types, suggesting that network activity

score can complement to expression data in single-cell analysis. 

Regulon by Cell matrix 

of Activity score

Cell groups by 

regulon activity
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❖ Study of cancer cell states based on regulon activity (bioRxiv https://doi.org/10.1101/715995)

• Melanoma cells with a melanocytic phenotype can switch to a mesenchymal-like phenotype.

• Searching for intermediate state between them and decipher their underlying GRN, regulon-based 

analysis was applied on scRNA-seq of patient-derived melanoma cultures.

• GRN we identified may serve as a new putative target to prevent the switch to mesenchymal cell 

state and thereby, acquisition of metastatic and drug resistant potential.

• SCENIC predicts transcription factors (TFs) governing each melanoma cell state, alongside 

candidate transcription factor target genes (regulon). 

• SCENIC yields a regulon-cell matrix with regulon activities across all single cells, and 

provides therefore an alternative dimensionality reduction. A UMAP visualization based on the 

regulon-cell matrix reveals three candidate cell states in an unsupervised manner, recapitulating 

findings based on count-cell matrix.

• Regulon activity analysis revealed some regulons specific to each state.

• The intermediate state shares several regulons with the melanocyte-like cell state or 

mesenchymal-like cell state.

• Some regulons are specific for intermediate state, including EGR3, RXRG and NFATC2. These 

TFs have previously been linked to a more aggressive/dedifferentiated phenotype in cancer 

and/or in melanoma specifically. 

• GSEA of EGR3 targets: vasculature development and stem cells.

• GSEA of NFAT2 targets: wounding response, EMT and stemness

Violin plots showing the activity of 

SCENIC regulons specific for the 

intermediate cultures (bottom) and 

shared between the intermediate and the 

mesenchymal-like cultures, as measured 

by AUCell for all melanoma cultures.
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❖ Hypothesis from network topology analysis

Cha and Lee. Exp. Mol. Med. (2020)

• Inference of co-regulatory from

transcriptome profiles of cells from two

distinct states (healthy control versus

disease state) will construct different

GRNs.

• Genes that show changes in three types

of network topology are likely to be

associated with the state: centrality,

neighbors, and modularity.

• For example, correlation analyses for

monocytes from healthy and disease

samples may generate different network,

and changes in three types of topology

between healthy and disease states will

be examined for every genes.

• Similarly, networks for different

developmental time along with topological

analysis would suggest disease-

associated genes, because many disease

states are associated with defect in

development.

• For example, defect in maturation of

monocyte into functional dendritic cells

would result in immune disorders.

❖ Cell-type specific changes in centrality

• Gene network for 6 brain cell types (astrocyte, excitatory neuron, inhibitory neuron, microglia, 

oligodendrocyte, oligodendrocyte progenitor) and a global network by their integration.

• In general, marker genes do not show higher centrality than other genes (cell-type agnostic 

centrality by global network). However, they exhibit a significantly higher cell-type-specific 

centrality.

• Topological specificity (topS): measure of cell-type-specific centrality

Cell Systems 9:559 (2019)
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❖ Cell-type specific changes in neighbors (targets)

Cho et al. manuscript was submitted

• Tissue-resident memory CD8+ T cells (Trm) are important for anti-tumor activity.

• Lung cancer patients with EGFR mutation (EGFR-MT) do not response to cancer immunotherapy 

compared with those with wild-type EGFR (EGFR-WT).

• EGFR-MT contains fewer tumor-infiltrating Trm cell than EGFR-WT, indicating that Trm cell state 

is impaired in EGFR-MT.

• NOTCH-RBPJ complex is a key regulator for Trm.

• In EGFR-MT, correlations between NOTCH (or RBPJ) and genes for differentiation and 

homeostasis of Trm are dysregulated.

• The lose of co-expression between cell-type specific regulators and their normal targets 

causes Impairment of the cell function.

❖ Cell-type specific changes in neighbors (targets)

• GRNs for self-renewing cells, erythroid committed progenitors and myeloid-committed progenitors, 

and demonstrated that DDIT3 changes its targets in three different GRNs.

• These results suggest that DDIT3 is a lineage regulator.

• Later, DDIT3 was experimentally validated as a lineage regulator. 

Cell Reports 10:1503 (2015)
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• Disease-associated genes tend to be connected by cell-type specific interactions.

• Many neurodevelopmental disorder (NDD) genes have been identified through de novo mutation 

studies. However, effects of NDD genes on specific brain cell type are still elusive.

• Co-expression enrichment (a measure of modularity) among genes for autism spectrum disorder 

(ASD), epilepsy, intellectual disability (ID) and developmental delay (DD) in six different brain cell 

types (neural progenitor cells, excitatory neurons, interneurons, astrocytes, oligodendrocyte 

progenitor cells, microglia) were tested using scRNA-seq data and found cell-type specific effect of 

NDD genes.

• The results suggest that disease genes tend to interact with cell-type-specific preference, with 

preferential cell types being targeted by the different disease classes. For example, ASD and 

epilepsy genes specifically effect on NPCs and interneurons, respectively.

• Cell-type-specific modularity of disease genes reveals cell-type-specific pathophysiology.

❖ Cell-type specific changes in modularity Genome Res. 30:835 (2020)

❖ Hypothesis from genotype-network association

Cha and Lee. Exp. Mol. Med. (2020)

• Majority of disease-associated SNPs exert 

phenotypic effect via action of expression 

quantitative trait loci (eQTL) because most of them 

are located within noncoding regions. 

• The eQTLs have long been suggested to exert its 

influence in a cell-specific manner.

• As scRNA-seq can provide transcriptome data for 

multiple cell types of the given tissue 

simultaneously, it can greatly facilitate cell-type-

specific eQTL analysis (Fig. a). 

• Interestingly, some eQTL effects of a gene can 

be modified by expression of another gene 

(Fig. b), called co-expression QTL, because they 

turned out to affect co-regulatory relationship 

between two genes. 

• For example, effect of gene X eQTL depends on 

the expression of gene Y (e.g. Y is a TF for X).

• Single-cell transcriptome data from each person 

can be sufficient to infer gene-gene correlation, 

building personalized GRN. Thus, we may test 

whether personal genetic variations affect disease 

risk or drug response by altering co-regulatory 

interactions. 

• If a co-regulatory interaction between a disease 

gene (X) and a drug target (Y) that affects the 

disease gene activity is modulated by a co-

expression QTL, this genotype information would 

be utilized in tailored prescription for individual 

patients in the future (Fig. c). 
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