# KSBi-BIML 2021

Bioinformatics & Machine Learning (BIML) Workshop for Life Scientists

생물정보학 & 머쉰러닝 워크샵(온라인)

# **Chemoinformatics**

이민호







# Bioinformatics & Machine Learning for Life Scientists BIML-2021

안녕하십니까?

한국생명정보학회의 동계 워크샵인 BIML-2021을 2월 15부터 2월 19일까지 개최합니다. 생명정보학 분야의 융합이론 보급과 실무역량 강화를 위해 도입한 전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하였으며 올해로 7차를 맞이하게 되었습니다. 유례가 없는 코로나 대유행으로 인해 올해의 BIML 워크숍은 온라인으로 준비했습니다. 생생한 현장 강의에서만 느낄 수 있는 강의자와 수강생 사이의 상호교감을 가질수 없다는 단점이 있지만, 온라인 강의의 여러 장점을 살려서 최근 생명정보학에서 주목받고 있는 거의 모든 분야를 망라한 강의를 준비했습니다. 또한 온라인 강의의한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다.

BIML 워크샵은 전통적으로 크게 생명정보학과 AI, 두 개의 분야로 구성되어오고 있으며 올해 역시 유사한 방식을 채택했습니다. AI 분야는 Probabilistic Modeling, Dimensionality Reduction, SVM 등과 같은 전통적인 Machine Learning부터 Deep Learning을 이용한 신약개발 및 유전체 연구까지 다양한 내용을 다루고 있습니다. 생명정보학 분야로는, Proteomics, Chemoinformatics, Single Cell Genomics, Cancer Genomics, Network Biology, 3D Epigenomics, RNA Biology, Microbiome 등 거의 모든 분야가 포함되어 있습니다. 연사들은 각 분야 최고의 전문가들이라 자부합니다.

이번 BIML-2021을 준비하기까지 너무나 많은 수고를 해주신 BIML-2021 운영위원회의 김태민 교수님, 류성호 교수님, 남진우 교수님, 백대현 교수님께 커다란 감사를 드립니다. 또한 재정적 도움을 주신, 김선 교수님 (Al-based Drug Discovery), 류성호 교수님, 남진우 교수님께 감사를 표시하고 싶습니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 강의자료를 만드는데 노력하셨을 뿐만아니라 실시간 온라인 Q&A 세션까지 참여해 수고해 주시는 모든 연사분들께 깊이감사드립니다.

2021년 2월

한국생명정보학회장 김동섭

### 강의개요

### Chemoinformatics

본 강의에서는 생물학이나 생물정보학 전공자들이 약물이나 소분자 정보의 활용 과정에 필요한 기초 이론, 지식 및 관련 데이터베이스 정보를 전달하는 것을 목표로 한다. 화합물 데이터베이스 종류 및 DB 내에서 활용할 수 있는 정보의 가공 방법 등을 간단히 소개하며, 추후 기계학습 등에 활용할 수 있도록 분자 구조를 다차원 수치 벡터로 변환하는 기법 등을 다룬다.

### 강의는 다음의 내용을 포함한다:

- Representation of chemical compounds
- File formats in chemoinformatics
- Chemical databases
- Bioassay databases
- Numerical representation
- Molecular fingerprints
- Hadoop/Spark Programming

\* 강의: 이민호 교수 (동국대학교 생명과학과)

### **Curriculum Vitae**

### Speaker Name: Minho Lee, Ph.D.



### ▶ Personal Info

Name Minho Lee

Title Assistant professor
Affiliation Dongguk University

### **▶** Contact Information

Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea

Email MinhoLee@dgu.edu

Research interest: Precision medicine

### **Educational Experience**

2005 B.S. Dept. of BioSystems, KAIST

2013 Ph.D. Dept. of Bio and Brain Engineering, KAIST

### **Professional Experience**

2013-2014 Post Doc, Information & Electronics Research Institute, KAIST
 2014-2016 Assistant professor, Dept. of Biological Sciences, Sangji University
 2016-2020 Research assistant professor, Catholic Precision Medicine Research Center, College

of Medicine, Catholic University of Korea

2020- Assistant Professor, Dept. of Life Science, Dongguk University

### Selected Publications (5 maximum)

- 1. Lee K. et al., Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server, BMC Bioinformatics, 2017
- 2. Lee M. et al., Genomic structures of dysplastic nodule and concurrent hepatocellular carcinoma, Human pathology, 2018
- 3. Lee M. et al., Whole-exome sequencing reveals differences between nail apparatus melanoma and acral melanoma, Journal of the American Academy of Dermatology, 2018
- 4. Lee M. et al., Circulating microRNA expression levels associated with Internet gaming disorder, Frontiers in psychiatry, 2018
- 5. Lee M. et al., A novel loci of the HR gene in Marie-Unna hereditary hypotrichosis using wholeexome sequencing, Indian Journal of Dermatology, Venereology, and Leprology, 2020



본 강의 자료는 한국생명정보학회가 주관하는 KSBi-BIML 2021 워크샵 온라인 수업을 목적으로 제작된것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다. 수업 목적으로 배포 및 전송받은 경우에도 이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없습니다.

만약 이러한 사항을 위반할 경우 발생하는 모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고합니다.

# **Topics**

- ▶ Representation of chemical compounds
  - File formats
- ▶ Chemical databases
  - Bioassay databases
- ▶ Numerical representation
  - Molecular fingerprints

# How to represent chemical information

- ▶ How can a molecular structure be stored on a computer?
  - Figure?
  - Coordinates?

### **SMILES**

### ▶ Simplified Molecular Input Line Entry System

- Weininger, J Chem Inf Comput Sci, 1988, 28, 31
- More recently, a community developed description: http://opensmiles.org
- Linear format ("line notation") that describes the connection table and stereochemistry of a molecule (i.e. 0D)
- Convenient to enter as a query on-line, store in a database

### Basic guidelines:

- Hydrogens are implicit
- Parentheses indicate branches
- ▶ Each atom is connected to the preceding atom to its left (excluding branches inbetween)
- ▶ Single bonds are implicit, = for double, # for triple

# SMILES examples

| SMILES    | Name             | SMILES           | Name             |
|-----------|------------------|------------------|------------------|
| CC        | ethane           | [OH3+]           | hydronium ion    |
| O=C=O     | carbon dioxide   | [2H]O[2H]        | deuterium oxide  |
| C#N       | hydrogen cyanide | [235U]           | uranium-235      |
| CCN(CC)CC | triethylamine    | F/C=C/F          | E-difluoroethene |
| CC(=0)0   | acetic acid      | F/C=C\F          | Z-difluoroethene |
| C1CCCCC1  | cyclohexane      | N[C@@H](C)C(=O)O | L-alanine        |
| c1ccccc1  | benzene          | N[C@H](C)C(=O)O  | D-alanine        |

| Reaction SMILES                      | Name                          |  |
|--------------------------------------|-------------------------------|--|
| [I-].[Na+].C=CCBr>>[Na+].[Br-].C=CCI | displacement reaction         |  |
| (C(=0)0).(OCC)>>(C(=0)OCC).(O)       | intermolecular esterification |  |

### Canonical SMILES

- In general, many different SMILES strings can be written for the same molecule
  - Not a unique identifier (one-to-many)
- ▶ Algorithms for producing "canonical SMILES" have been developed
  - The same unique SMILES string is always created for a particular molecule
  - ▶ One-to-one relationship between structure and representation
  - Note however, that different software implement different canonicalization algorithms

### InChl

- International Chemical Identifier
  - Line notation developed by NIST and IUPAC
  - ▶ Goal: An index for uniquely identifying a molecule
  - Example

InChI=1/C6H9NO2/c1-4-6(8)9-5(2)7(4)3/h1-3H3

### InChl

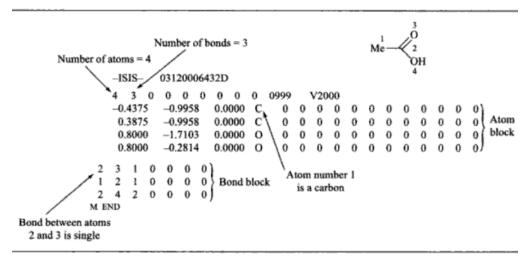
### Features

- Derived from the structure
- One-to-one relationship between InChl and structure
- Layers (of specificity)
  - Can distinguish between stereoisomers, isotopes, or can leave out those layers
- Different tautomeric forms give rise to the same InChI (unlike SMILES)

### InChlKey

▶ a fixed length (25 character) condensed digital representation of the InChI

# Example (Caffeine)


### SMILES

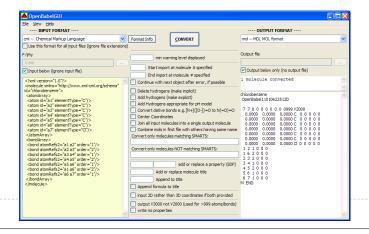
- ► [c]I([n+]([CH3])[c]([c]2([c]([n+]I[CH3])[n][cH][n+]2[CH3]))[O-])[O-]
- ► CNIC(=O)N(C)C(=O)C(N(C)C=N2)=C12
- ► Cnlcnc2n(C)c(=O)n(C)c(=O)cl2
- Cnlcnc2clc(=O)n(C)c(=O)n2C
- ► N1(C)C(=O)N(C)C2=C(C1=O)N(C)C=N2
- ightharpoonup O=CIC2=C(N=CN2C)N(C(=O)NIC)C
- ► CNIC=NC2=CIC(=O)N(C)C(=O)N2C

### ▶ InChI

► InChl=IS/C8HI0N4O2/c1-I0-4-9-6-5(I0)7(I3)I2(3)8(I4)II(6)2/h4H,I-3H3

# Mol file



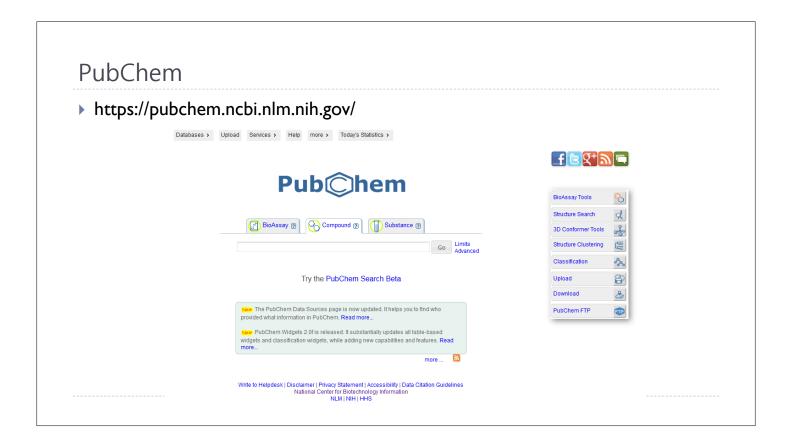

12.3: MDL mol file for acetic acid, in the hydrogen-suppressed form.

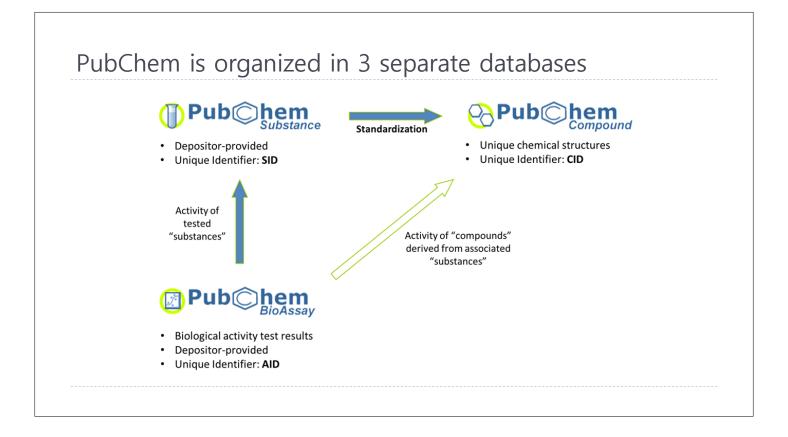
# Other formats

- ▶ CML
- MOL2
- ▶ SDF
- ▶ PDB
- **...**

# Open babel

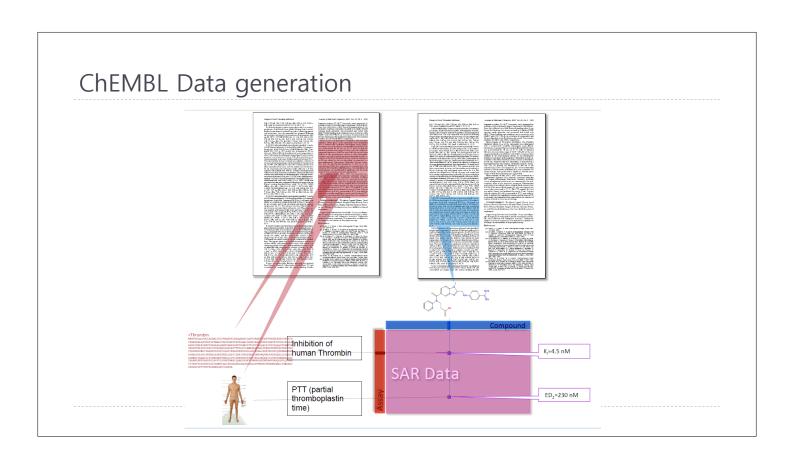
- http://openbabel.org
- > a chemical expert system mainly used for converting chemical file formats
- Offers CUI & GUI





# Chemical Databases

| Database         | Content                                                  | Size (no. of compounds) | URL                                              |
|------------------|----------------------------------------------------------|-------------------------|--------------------------------------------------|
| Bioactivity data |                                                          |                         |                                                  |
| ChEMBL           | Bioactivity data from the medicinal chemistry literature | 1 360 000               | https://www.ebi.ac.uk/chembldb                   |
| PubChem          | Biological screening results on small molecules          | 49 000 000              | https://pubchem.ncbi.nlm.nih.gov/                |
| Patents          |                                                          |                         |                                                  |
| IBM              | Chemicals from full text patents                         | 2 500 000               | http://www-935.ibm.com/services/us/gbs/bao/siip. |
| SureChEMBL       | Chemicals from full text patents                         | 12 400 000              | https://www.surechembl.org                       |
| Drugs            |                                                          |                         |                                                  |
| DRUGBANK         | Drug data and drug target information                    | 7700                    | http://www.drugbank.ca                           |
| FDA/USP SRS      | Substances present in FDA regulated products             | 34 000                  | http://fdasis.nlm.nih.gov/srs/srs.jsp            |
| Availability     |                                                          |                         |                                                  |
| ZINC             | Commercially available compounds                         | 22 700 000              | http://zinc.docking.org                          |
| emolecules       | Commercially available compounds                         | 5 900 000               | http://www.emolecules.com                        |
| Other            |                                                          |                         |                                                  |
| ChEBI            | Database and ontology of Chemical Entities of            | 27 000                  | https://www.ebi.ac.uk/chebi/                     |
|                  | Biological Interest                                      |                         |                                                  |
| PDB              | Data on biological macromolecular structures             | 16 000                  | https://www.ebi.ac.uk/pdbe/                      |

Note: All numbers from Apr 2014.


http://dx.doi.org/10.1016/j.ddtec.2015.01.005



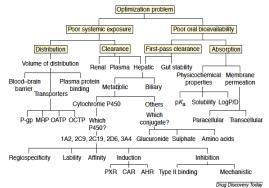


### **ChEMBL**

- Open access database for drug discovery
- ▶ Freely available (searchable and downloadable)
- Content:
  - ▶ 2D structures & calculated properties (logP, MW, Lipinski, etc.)
  - Associated bioactivity data extracted from the primary medicinal chemistry journals such as J. Med. Chem.
  - Deposited data from neglected disease screening (e.g. malaria)
  - ▶ Subset of data from PubChem
- ▶ Covers ~30 years of compound synthesis and testing
- Annotated FDA-approved drugs

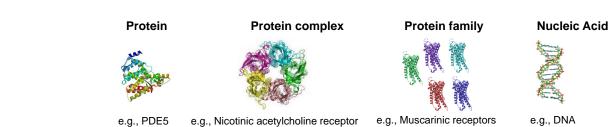


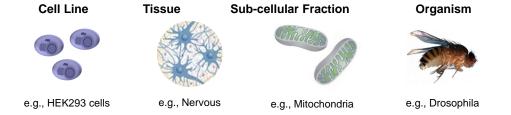
### ChEMBL Assays – Binding, Functional, ADMET


- Binding Assays
  - Assays which directly measure the binding of a compound to a particular target
    - □ E.g., competition binding assays with a radioligand
- Various endpoints measured, but most commonly reported are:
  - ▶ IC50 (half maximal inhibitory concentration)
  - Ki (binding affinity)
  - MIC (minimum inhibitory concentration)
  - % Inhibition (of activity)

# Whole organism assays (e.g., anti-infectives/parasitics) Disease-derived cell-line (e.g., human ovarian cancer cell line cytotoxicity) Tissue or cell-based disease model (e.g., glucose uptake by adipocytes) Tissue or cell-based assay for target effect (e.g., contraction of guinea-pig ileum) Cell-based assay over-expressing target (e.g., GPCR calcium mobilisation)

# **ADMET Assays**

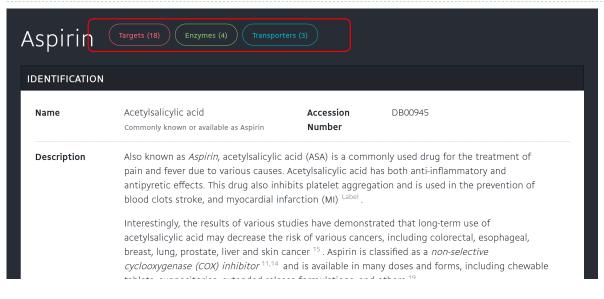

Assays measuring:


Absorption, Distribution, Metabolism, Excretion, Toxicity properties of compounds

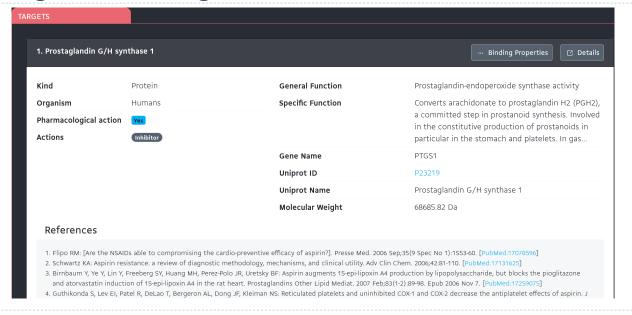


- Examples include:
  - Half-life of compound in rats
  - Tissue distribution of compound
  - Levels of metabolites

**ChEMBL Targets** 





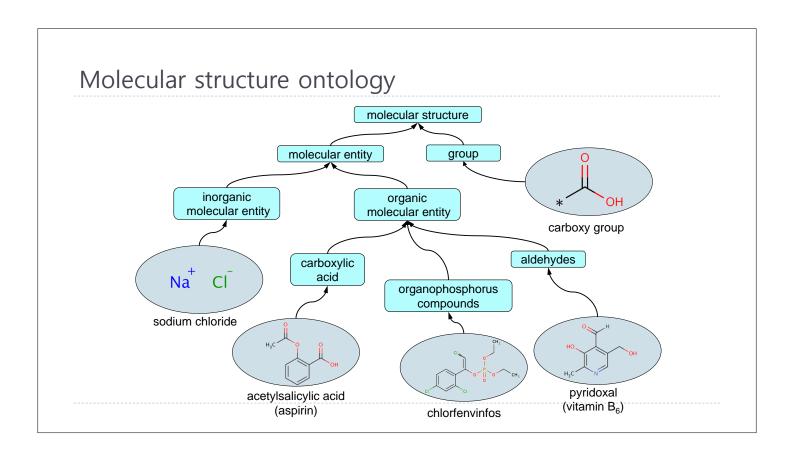


### **Protein Targets**

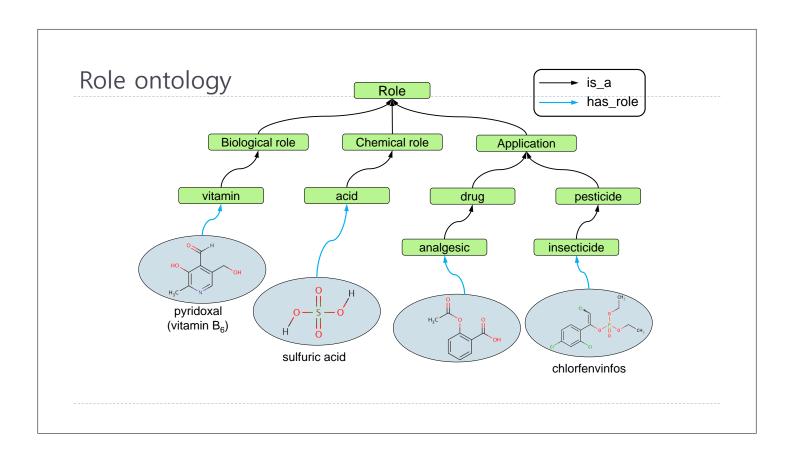
- ▶ Each protein target linked to a sequence in UniProt
- Information from UniProt used in ChEMBL to allow searching:
  - Protein name/description
  - Synonyms and gene names
  - Organism (and NCBI Tax ID)
- ▶ Proteins in ChEMBL also classified according to family (e.g., Receptor, Kinase, Protease, Transporter etc).
  - Used for searching by target tree (Browse Targets)

# DrugBank example: Acetylsalicylic acid




# DrugBank: ASA targets





### ChEBI

- http://www.ebi.ac.uk/chebi
- Chemical Entities of Biological Interest
- A freely available, manually curated chemistry database
- High quality, manually annotated
- Provides chemical ontology









# 

### **ZINC**

- http://zinc.docking.org/
- > ZINC was originally designed for target based virtual screening (docking)
- also useful for many other things
  - finding a compound to purchase
  - b downloading a library in SMILES format for ligand based virtual screening
  - find compounds by similarity to a starting
  - ▶ find compound ANNOTATED for a particular target (via ChEMBL)
  - ▶ find compounds PREDICTED for a particular target (via ChEMBL or docking)

### ZINC subsets

|                                    | Lead-Like                                                                                    | Fragment-Like                                                                               | Drug-Like                                                                                                                                    | All                                            | Shards                                     |
|------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| <b>Standard</b><br>Size<br>Updated | <u>Lead-Like</u><br>6,053,287<br>2014-09-29                                                  | Fragment-Like<br>847,909<br>2015-02-04                                                      | <u>Drug-Like</u><br>17,900,742<br>2014-11-24                                                                                                 | All<br>Purchasable<br>22,724,825<br>2014-11-28 | <u>Shards</u><br>635,159<br>2014-05-16     |
| <b>Clean</b><br>Size<br>Updated    | Clean Leads<br>4.591,276<br>2014-09-25                                                       | Clean<br>Fragments<br>1,611,880<br>2014-09-24                                               | Clean Drug-Like<br>13,195,609<br>2013-11-05                                                                                                  | All Clean<br>16,403,865<br>2013-12-18          | Clean Shards<br>325,950<br>2014-11-24      |
| In Stock<br>Size<br>Updated        | <u>Leads Now</u><br>3,687,621<br>2014-06-25                                                  | Frags Now<br>704,041<br>2015-02-04                                                          | <u>Drugs Now</u><br>10,639,555<br>2014-11-24                                                                                                 | All Now<br>12,782,590<br>2014-05-01            | Shards Now<br>424,775<br>2014-09-24        |
| <b>Boutique</b> Size Updated       | Boutique Leads<br>5,114,169<br>2012-12-24                                                    | Boutique Frags<br>2.755.555<br>2013-11-08                                                   | Boutique Drugs<br>10,292,210<br>2012-11-27                                                                                                   | All Boutique<br>12,217,845<br>2012-11-27       | Boutique<br>Shards<br>80,698<br>2013-11-08 |
| Comments/Citation                  | Teague, Davis, Leeson,<br>Oprea, Angew Chem Int<br>Ed Engl. 1909 Dec<br>16;38(24):3743-3748. | Carr RA, Congreve M,<br>Murray CW, Rees DC,<br>Drug Discov Today.<br>2005 Jul 15;10(14):987 | Lipinski, J Pharmacol<br>Toxicol Methods. 2000<br>Jul-Aug;44(1):235-49.                                                                      | Purchasable chemical space                     | Type I binding sites                       |
| Filtering Critieria                | p.mwt <= 350 and<br>p.mwt >= 250 and<br>p.xlogp <= 3.5 and p.rb<br><= 7                      | p.xlogp <=3.5 and<br>p.mwt <=250 and p.rb<br><= 5                                           | p.mwt <= 500 and<br>p.mwt >= 150 and<br>p.xlogp <= 5 and p.rb<br><=7 and p.psa <150<br>and p.n_h_donors <= 5<br>and p.n_h_acceptors<br><= 10 |                                                | p.mwt < 190                                |

# Protein Data Bank(PDB): structure database

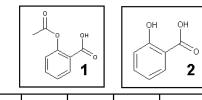


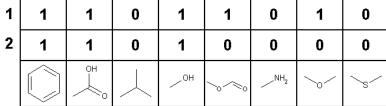
### PDB file (text format)

```
HEADER
               TRANSFERASE
                                                                            17-JUN-02
TITLE
             EPIDERMAL GROWTH FACTOR RECEPTOR TYROSINE KINASE DOMAIN 2 WITH 4-ANILINOQUINAZOLINE INHIBITOR ERLOTINIB
COMPND
              MOL ID: 1;
COMPND
              2 MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
COMPND
              3 CHAIN: A;
 COMPND
              4 FRAGMENT: TYROSINE KINASE DOMAIN (RESIDUES 671-998);
              5 SYNONYM: RECEPTOR PROTEIN-TYROSINE KINASE ERBB-1; 6 EC: 2.7.1.112;
COMPND
 COMPND
                ENGINEERED: YES
COMPND
              MOL_ID: 1;
2 ORGANISM_SCIENTIFIC: HOMO SAPIENS;
SOURCE
SOURCE
              3 ORGANISM COMMON: HUMAN;
SOURCE
 SOURCE
             EXPRESSION_SYSTEM: SPODOPTERA FRUGIPERDA;
EXPRESSION_SYSTEM_COMMON: FALL ARMYWORM;
EXPRESSION_SYSTEM_STRAIN: AUTOGRAPHICA
SOURCE
SOURCE
SOURCE
SOURCE
              8 CALIFORNICA/T.NICOPLUSIA;
           8 CALIFORNICA/T.NICOPLUSIA;
9 EXPRESSION_SYSTEM_CELL_LINE: SF9;
10 EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID;
11 EXPRESSION_SYSTEM_PLASMID: PVL1392
TRANSFERASE, TYROSINE KINASE DOMAIN
SOURCE
SOURCE
KEYWDS
              X-RAY DIFFRACTION
J.STAMOS, M.X.SLIWKOWSKI, C.EIGENBROT
EXPDTA
AUTHOR
REVDAT
             2 25-FEB-03 1M17
1 04-SEP-02 1M17
REVDAT
                  AUTH J.STAMOS, M.X.SLIWKOWSKI, C.EIGENBROT
JRNL
JRNL
JRNL
                  TITL STRUCTURE OF THE EPIDERMAL GROWTH FACTOR RECEPTOR TITL 2 KINASE DOMAIN ALONE AND IN COMPLEX WITH A
                  TITL 3 4-ANILINOQUINAZOLINE INHIBITOR.
REF J.BIOL.CHEM. V. 277 46265 2002
REFN ASTM JBCHA3 US ISSN 0021-9258
JRNL
JRNL
JRNL
 REMARK
REMARK
REMARK
             2 RESOLUTION. 2.60 ANGSTROMS.
```

# Molecular similarity

- Structurally similar molecules tend to have similar properties
- If we can measure similarity somehow
  - Can construct a distance matrix
    - > Such matrices can be used to cluster compounds
  - Can use to find molecules in a database similar to a particular query
    - ▶ Can find unknown molecules with a similar property
  - Can use to see whether a particular property is correlated with molecular similarity


# ...But how to measure similarity?


▶ How similar are aspirin (A) and salicylic acid (B)?

# Chemical fingerprint

A molecular fingerprint is an encoding of the molecular structure onto a (long) binary string

# Tanimoto coefficient



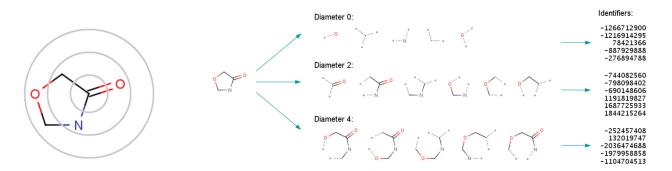


A = Number of bits set in both = 3 B = Number of bits set in (1), but not in (2) = 2 C = Number of bits set in (2), but not in (1) = 0

# Types of fingerprint

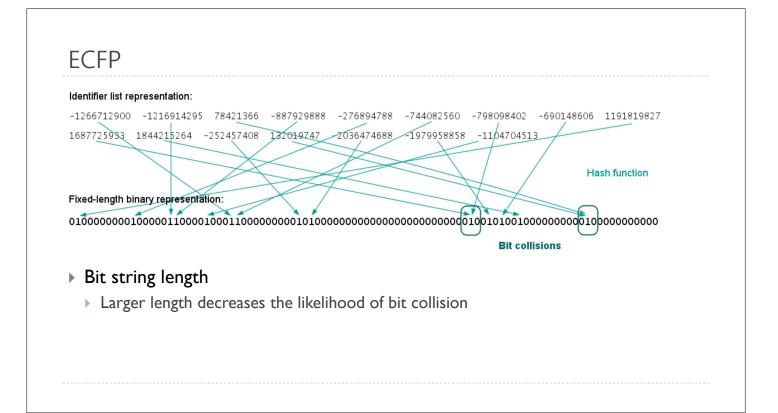
- PubChem
- Daylight
- Extended Connectivity Fingerprint (ECFP)

# PubChem fingerprint


Aspirin Structure

| Bit Position | Bit Substructure |
|--------------|------------------|
| 0            | >= 4 H           |
| 1            | >= 8 H           |
| 2            | >= 16 H          |
| 3            | >= 32 H          |
| 4            | >= 1 Li          |
| 5            | >= 2 Li          |
| 6            | >= 1 B           |
| 7            | >= 2 B           |
| 8            | >= 4 B           |
|              |                  |

Pubchem Molecular Fringerprint


### **ECFP**

Extended Connectivity Fingerprint



▶ ECFP\_2, ECFP\_4, ECFP\_6, ... : depending on diameter

https://docs.chemaxon.com/display/docs/Extended+Connectivity+Fingerprint+ECFP



# tools for calculating molecular fingerprints

- Chemistry Development Kit (CDK)
  - JAVA
  - https://cdk.github.io/
- ▶ RDKit
  - C++, Python
  - https://www.rdkit.org/
- R packages
  - rcdk in CRAN
  - ▶ Rcpi in bioconductor