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Curriculum Vitae

Speaker Name: Hojung Nam, Ph.D.

» Personal Info

Name Hojung Nam
Title Associate Professor
Affiliation Gwangju Institute of Science and Technology (GIST)

» Contact Information

123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
Email hjnam@gist.ac.kr

Phone Number 062-715-2641

Research interest : Bioinformatics, Systems Biology, Cheminformatics, Machine learning

Educational Experience

2001 B.S. in Computer Science, Sogang Univ., Seoul, Korea.
2003 M.S. in Computer Science, KAIST, Daejeon, Korea.
2009 Ph.D. in Bio and Brain Engineering, KAIST, Daejeon, Korea.

Professional Experience

2009-2013 Postdoctoral Researcher, Bioengineering, University of California, San Diego, CA USA
2013-2018 Assistant Professor, Gwangju Institute of Science and Technology (GIST)
2018- Associate Professor, Gwangju Institute of Science and Technology (GIST)

Selected Publications (Recent two years, CA only)

1. Hyunho Kim, Eunyoung Kim, Ingoo Lee, Bongsung Bae, Minsu Park, Hojung Nam*,
Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-Driven and
Machine Learning Approaches”, Biotechnology and Bioprocess Engineering, volume 25,
pages895-930(2020).

2. Hyunho Kim, Hojung Nam* "hERG-Att: Self-Attention-Based Deep Neural Network for
Predicting hERG Blockers", Computational Biology and Chemistry, Available online 19 May
2020, 107286.

3. Soobok Joe , Hojung Nam*, "Prediction model construction of stem cell pluripotency using
CpG and non-CpG DNA methylation markers", BMC Bioinformatics, 2020 21:175.

4. Heeyeon Choi, Soobok Joe, Hojung Nam*, "Development of Tissue-Specific Age Predictors
Using DNA Methylation Data", Genes 2019, 10(11), 888.

5. Ingoo Lee, Jongsoo Keum, Hojung Nam?* "DeepConv-DTI: Prediction of drug-target
interactions via deep learning with convolution on protein sequences”, PLoS Computational
Biology 15(6): €1007129. https://doi.org/10.1371/journal.pcbi.1007129
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INTRODUCTION TO
PHARMACOGENOMICS




Pharmacogenomic

" The term pharmacogenetics was coined in the 1950s and
captures the idea that large effect size DNA variants contribute
importantly to variable drug actions in an individual (single
gene-drug).

" The term pharmacogenomics is now used by many to describe
the idea that multiple variants across the genome that can
differ across populations affect drug response. The
International Conference on Harmonisation, a worldwide
consortium of regulatory agencies, has defined
pharmacogenomics as the study of variations of DNA and
RNA characteristics as related to drug response.

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.

Bad side effects

Good response

No response

Look for genetic variants that affect drug response used to treat the
condition. The analysis will yield results that allow physicians to
determine if their patient will have a positive response to the drug
treatment.

[National Human Genome Research Institute]

Pharmacogenomics Adds Precision to the Practice of Medicine, June 15, 2015 (Vol. 35, No. 12)

https://www.genengnews.com/magazine/249/pharmacogenomics-adds-precision-to-the-practice-of-medicine/
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Current Medicine
One Treatment Fits All

I
19
\ \! No effect
Therapy 8
Cancer patients with @1\ }1

e.g. colon cancer
\ Adverse effects

Future Medicine
More Personalized Diagnostics

an B

as b B

!
Cancer patients with Blood, DNA,
e.g. colon cancer Urine and Tissue Analysis
Effect

https://blog.crownbio.com/pdx-personalized-medicine#_

Drug discovery and development

Target Hit
discovery screening £

Lead
optimization « clinical

Efficacy
Animal studies .
100~200 patients
Literature study 3D Modeling Safety / PK Efficacy
KO/KD test SAR/QSAR 50~150 patients 500~5000 patients

High throughput
screening

ADME/PK




Pharmacogenomics in
drug discovery and development

Pre- I
................................ | dinical |

Target ~ Lead p
discovery screening /" optimization " clinical /

Suggest best candidates Suggest best trial case

Target discovery ADME/T
w/ variations (CYP450)
Interactions w/ D.rtL.Jg .
variations repositioning

AN
Example 1- ®  The thiopurine S-methyltransferase (TPMT) is a
metabolizer of chemotherapeutic agents 6MP
TPMT and azothiopurine (used mainly in blood-based
malignancies)
Pharmacogenetics in = TPMT deficiency leads to severe toxicity
Oncology associated with treatment (potential mortality)
TPMT function
Normal function > Expected drug
—> effect
Azathioprine or Decreased function Risk of
6-mercaptopurine —— » haematological
dose toxicity
> No function High risk of
haematological
toxicity
Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.
A AN




®  Cytochrome P450 2D6 (CYP2D6) is an enzyme that in
humans is encoded by the CYP2D6 gene. CYP2D6 is

EXample 2 - primarily expressed in the liver.

® |n particular, CYP2D6 is responsible for the metabolism

CYPZ D6 and elimination of approximately 25% of clinically used
drugs, via the addition or removal of certain functional

groups — specifically, hydroxylation, demethylation, and

dealkylation. CYP2D6 also activates some prodrugs.
L
:
Cotblie s Nk R CYP2D6 function Active drug concentration
Increased function ; ;
T | > High morphine
concentration
Normal function > Expe(ted morphine
Codeine d concentration
odeinedose Decreased function Lower morphine
—» > :
concentration
No function
—p > No morphine

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.
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Single-nucleotide polymorphism

From Wikipedia, the free encyclopedia

This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by

-
s
references. [October 2012) (leam how and when to remove this template message)

removing excessive or inappropriate external links, and converting useful links where appropriate into footnote

A single-nucleotide polymorphism, often abbreviated to SNP (/snip/; plural /'

nucleotide that occurs at a specific position in the genome, where each variation is present to some

/). is a variation in a single

appreciable degree within a population (e.g. > 195)."]

For example, at a specific base position in the human genome, the C nucleotide may appear in most
individuals, but in a minerity of individuals, the position is occupied by an A. This means that there is a SNP at
this specific position, and the two possible nucleotide variations — C or A — are said to be alleles for this
position.

SNPs underlie differences in our susceptibility to disease; a wide range of human diseases, e.g. sickle-cell
anemia, P-thalassernia and cystic fibrosis result from SNPs.2IBIE] The severity of illness and the way the body
responds to treatments are also manifestations of genetic variations. For example, a single-base mutation in
the APOE (apolipoprotein E) gene is associated with a lower risk for Alzheimer's disease.l’]

A single-nucleotide variant (SNV) is a variation in a single nucleotide without any limitations of frequency and
may arise in somatic cells. A somatic single-nuclectide variation (e.g., caused by cancer) may also be called a
single-nucleotide alteration.

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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The upper DNA molecule differs from the lower 57
DMNA molecule at a single base-pair location (a C/A
polymorphism)

NCBI dbSNP

Sign in to NCBI

dbSNP SNP v |[cyp2a6 |
Create alert  Advanced Help
Clinical Display Settings: » Summary, 20 per page, Sorted by SNP_ID Sendto:~  Filters: Manage Filters
Significance
benign Find related data =
drug response Search results ind related da
fikely benign ) Database:
ather Items: 1 to 20 of 3318 Page III of 166 Next> Last==
Validation Status
by-ALFA O rs16947 (Homo sapiens]
by-cluster 1.
by-frequency Variant type: SNV Search details =
—_— Alleles G=AT [Show Flanks] -
Publication Chromosome: 22:42127941 (GRCh38) cyp2dB[All Fields]
Livar Annotated 22:47523943 (GRCh37)
Publed Cited Canonical SPDI: NC_000022 1142127940 G:A NC_000022 11-42127040:G.T
Pubhed Linked Gene: CYF2D8 (Varview) y
Function Class Functional Consequence: t?oding_st?quencg_variant.missense_variant
inframe deletion C"'jical significance: likely-benign.benign,drug-respanse | Search | See more...
inframe indel Validated: by frequency by alfa,by cluster e
inframe insertion MAF A=0.366535/4092 (ALFA)
intron A=0.255616/91 (PharmGKB) - -
missense A=0 376465/47272 (TOPMED) Recent activity

non coding transcript variant
synonymous

Variation Claj
del

delins

ins

mny

Annotation

NC_000022.11:9.42127941G=A, NC_000022 11:9.42127941G=T,
NG_008376.4:9.7870C>T, NG_008376.4:9.7870C=A, NG_008376.3:9.7051C=T,
NG_008376.3:9.7051C=A, NM_000106.6:c.886C=T, NM_000106.6:C.386C=A,

SNV

ATt

Turn Off  Clear

Q, cyp2ds (3318)
SNP
maore

See more...

https://www.ncbi.nlm.nih.gov/snp/?term=cyp2d6
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National Center for o -

Biotechnology Information

NCBI Home Welcome to NCBI Popular Resources

Resource List A7) The National Center for Biotechnology Information advances science and health by providing access to PubMed

All Resources biomedical and genomic information. Bookshelf

Chenmicals & Bioassays About the NCBI | Mission | Organization | NCBI News & Blog PubMed Central

Data & Software BLAST

DNA & RNA Submit Download Learn Nucleotide

Domains & Structures Deposit data or manuscripts Transfer NCBI data to your Find help documents, attend a Genome

e & Eraroiicn into NCBI databases computer class or watch a tutorial SNP

Genetics & Medicine o

Genomes & Maps Protein
PubChem

Homology

Literature

Proteins NCBI News & Blog

Sequence Analysis Develop Analyze Research Allele Frequency Aggregator (ALFA)

Taxonom Release 2 is available!

i Use NCBI APIs and code Identify an NCBI tool for your Explore NCBI research and 22 J

Training & Tutorials libraries to build applications data analysis task collaborative projects to

Variation ®
NCBI on YouTube: RAPT and BLAST+
on the Cloud, SARS-CoV-2 genome data
in Datasets
RefSeq release 204 is now available

More
You are here: NCBI > National Center for Biotechnology Information Support Center
GETTING eTARTER RECAIRCES oI AR cEATIREN NCRIINENRMATION
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genome aggregation database

Search by gene, region, or variant

Examples - Gene: PCSK9, Variant: 1-55516888-G-GA

The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition
of investigators, with the geal of aggregating and harmonizing both exome and genome sequencing
data from a wide variety of large-scale sequencing projects, and making summary data available for
the wider scientific community.

The data set provided on this website spans 125,748 exome sequences and 15,708 whole-genome
sequences from unrelated individuals sequenced as part of various disease-specific and population
genetic studies. The gnomAD Principal Investigators and groups that have contributed data to the
current release are listed here.

All data here are released for the benefit of the wider biomedical community, without restriction on
use - see the terms of use here. Sign up for our mailing list for future release announcements here.

https://gnomad.broadinstitute.org/
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gnomAD browser

v e R OeococBaRERO® B s»=0Q:

gnomAD v2.1.1 ¥ About News Downloads Terms Publications Contact FAQ

gnomAD v3.1 released!

gnomAD
NTVYY

genome aggregation database

gnomAD v2.1.1 ~ Search by gene, regior

Please note that gnomAD v2.1.1 and v3.1 have substantially different but overlapping sample
compositions and are on different genome builds. For more information, see the FAQ “Should |

witch to the latest version of gnomAD?

Examples - Gene: PCSK9, Variant: 1-55516

The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition
of investigators, with the goal of aggregating and harmonizing both exome and genome
sequencing data from a wide variety of large-scale sequencing projects, and making summary data
available for the wider scientific community.

The v2 data set (GRCh37/hg19) provided on this website spans 125,748 exome sequences and
15,708 whole-genome sequences from unrelated individuals sequenced as part of various disease-
specific and population genetic studies. The v3.1 data set (GRCh38) spans 76,156 genomes, selected
as in v2. The gnomAD Principal Investigators and groups that have contributed data to the current

https://gnomad.broadinstitute.org/ 17

The Human Cytochrome P450 (CYP)
Allele Nomenclature Database

Allele nomenclature for Cytochrome P450 enzymes

New List: CYP allele frequencies from 56,945 unrelated individuals
of five major human populations

Inclusion criteria - New criteria regarding variants identified by NGS

iRAMP_calculator of contribution of rare variants.

Cytochrome P450 Oxidoreductase: POR

CYP1 family:
CYPIAIL; CYPI142; CYPIBI

CYP2 family:
CYP246,; CYP2413; CYP2B6, CYP2CS, CYP2C9; CYP2C19;
CYP2D6; CYP2EI; CYP2FI; CYP2J2; CYP2RI; CYP2SI; CYP2WI

CYP3 family:
CYP3A4; CYP3435; CYP347, CYP3A443

CYP4 family:
CYP4A411; CYP4A422; CYP4B1; CYP4F2

https://www.pharmvar.org/htdocs/ar

chive/index_original.htm

CYP=4 families:
CYP5A41; CYP8AI;, CYP1941, CYP21A2; CYP26A41

SNP information on CYP17A41 can be found here
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The Human Cytochrome P450 (CYP)
Allele Nomenclature Database

Allele nomenclature for Cytochrome P450 enzymes

New List: CYP allele frequencies from 56.945 unrelated individuals
of five major human populations

Inclusion criteria - New criteria regarding variants identified by NGS

iRAMP_calculator of contribution of rare variants.

Cytochrome P450 Oxidoreductase: POR

CYP1 family:

CYPiAl; CYPIA2; CYPIBI

CYP2 family:

CYP2A46; CYP2413; CYP2B6; CYP2CS8; CYP2C9; CYP2C19;
CYP2D6; CYP2EI; CYP2F1; CYP2J2; CYP2RI; CYP2S1; CYP2W1
CYP3 family:

CYP344; CYP3A45; CYP3A47; CYP3443

CYP4 family:

CYP4A411; CYP4422; CYP4B1; CYP4F2

CYP>4 families:

CYP5A1: CYP841: CYP19A41: CYP2142: CYP26A41

https://www.pharmvar.org/htdocs/archive/index_original.htm

PharmVar

The Human CYP Allele
Nomenclature Database

PharmVvar
‘\‘/ P‘halr;nGKB

After more than 15 years the Human Cytochrome
P450 (CYP) Allele Nomenclature Database has transitioned...

\

...to the Pharmacogene Variation (PharmVar) Consortium at www.PharmVar.org

PharmVar will serve as a central repository for pharmacogene variation to facilitate
allele (haplotype) designation and the interpretation of pharmacogenetic test results to guide precision medicine
PharmVar is a PGRN resource funded by NIGMS.

After September 26, 2017, please visit www.PharmVar.org to access content of the original
P450 Nomenclature Database

http://www.cypalleles.ki.se/

-10-
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PhOrl I |VO r ‘II; HOME  ABOUT  GENES  SUBMISSIONS  MEMBERS  RESOURCES CONTACT LOGIN
Pharmacogene Variation Consortium
[PVID Lookup Q

PharmVar 4

Pharmacogene Variation Consortium

The Pharmacogene Variation (PharmVar) Consortium is a central repository for
pharmacogene (PGx) variation that focuses on haplotype structure and allelic variation.

The information in this resource facilitates basic and clinical research as well as the
interpretation of pharmacogenetic test results to guide precision medicine.

e PharmVar API Services are now available for third party use. For more information, visit the API Service Documentation Page

W Follow us on Twitter

PharmVar Publications

Articles published by PharmVar are available on the resources page.

Original content from the cypalleles.ki.se site is available through the archive

https://www.pharmvar.org/
21

PHARMGKB

Publications News Downloads Contact @ Help

Search PharmGKB Q

Search for a molecule, gene, variant, or combination

Therapeutic Resource for COVID-19

PharmGKB data are under a Creative Commons license. More details are in our Data Usage
Policy. Please cite PharmGKB if you use our information or images.

Drug Label Clinical Guideline Curated Annotated
Annotations Annotations Pathways Drugs

= 780 165" 151" g 709"

https://www.pharmgkb.org/
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\B/ PHARMGKB

Search PharmGKB

Qax e =0DcocBERROBNR»=Q

News Downloads Contact

Search for a molecule, gene, variant, or combination

Therapeutic Resource for COVID-19

PharmGKB data are under a Creative Commons license. More details are in our Data Usage Policy.
N Please cite PharmGKB if you use our information or images.

Drug Label
Annotations

g 780"

Clinical Guideline
Annotations

f2] 165"

Curated
Pathways

I 151"

https://www.pharmgkb.org/

Annotated
Drugs

B 709"

Resources for pan-cancer
genomics profiles and tools

Brief Bioinform . 2020 Dec 1;21(6):2066-

2083. doi: 10.1093/bib/bbz144.

Table 2. Resourres for pan-cancer genomics profiles and tools

Resource Dats type profiling  Sample siza

Description Link References

Adult cancers
TOGA (The Cancer CHA,

clin, LGEX, Miooarray, ~11300
Genome Atlas) Methyl, miEX, NGS5
SNV

METS00 CNA, SNV NGS 500

‘Padiatric cancers

TARGET clin, GEX, miEX, NGS5 ~3200 (according
(Therapeutically SNV to the GDC Data
Applicable Portal accessed
Research to in May 2018)
Generate Effective

Treatments)

PedPancan SNV NGS 961

(Pediatric

Pan-Cancer study)

«cancer cell lines

Mostly primary tumors of 33 Individual cancers:  [150]
cancers https:/fportal.gdc.
cancer.govi
Merged pan-cancer
data: https-//gdc.
cancer.govi
node/sos’
Also dowmnloadable
byan

R/Bioconductor
TCGAbiokinks [41]
Metastatic tumors of 30 ‘hitps://metso0.path. [43]
cancers med umich edw/

& pediatric cancers (according  hitpss/portalgde.  [44]

to the GDC Data Portal cancer.govi

accessed in May 2018) Also downloaded
byan
R/Bloconductor

TCGAbiokinks [41]
24 pediatric cancers hupsiwww. [s]
pedpancan.com

CCLE (Cancer Cell  CMA, GEX, RFPA, Miooarray, ~1500 ‘hitps//portals. [15,151]
Line Encyclopedia) SNV NG ‘broadinstitute org/
ccle
Also accessible
through the Cancer
Dependency Map
(DepMap): hitps://
depmap.org/portal’
Curations
ICGC (Intemational Chin, CNA,GEX, Curation ~24 000 Curation of 80+ intemational  httpficgcorg/ [48]
Cancer Genome Methyl, miEX, cancer projects, induding
Consortium) SNV TCGA and TARGET
COSMIC (Catalogue  CMA, SNV Curation Summarization of https.cancer. [48]
of Somatic cancer-related mutations sanger.ac.ul/
Mutations in across 32 000+ tumors and cosmic
cancer) cancer cells curated from
75 000 papers
‘Pan-cancer data visuslization
TumariMap 2D maps Curation Visualization of TOGA, TARGET, httpsuftumormap.  [47]
etc ucscedu!
and biological
MsigD8 (Molecular  Genes sets Curation 17 800 gene sets Genes sets of cytobands, ‘hitpfsoftware. [52-54]
signatures curations, motifs, ‘broadinstitute orgl
Database computation, Gene psea/msipdbfindex.
Ontologies, oncogenic jsp
signatures and immunology
Pathway Commons — Biological Curation 4000+ pathways  Collection of binlogical ‘hittps:iwww. [157]
pathways pathways from 20+ pathwaycommons.
databases, induding KEGG o1/
and Reactome
NDEx {Network Data  Biological Curation Interactive database that wwwndexbio.org/  [153]
Exchange) networks allows users to query,
visualize, upload, share and
distributa biological networks
‘Normal tissues
GTEX GEX NGS ~11700 Expression profiles of 53 hitps:/fgtexportal.  [154, 155]
{Genotype-Tissua non-diseased tissuesacross  org'homed
Expression) ~1000 individuals that can be
used as normal contralds for
cancer studies
Clin, clinical data; CNA, copy number alteration; GEX, g ion; Metiyl, mikX, ian; NG, next ? ing; RFPA, reverse:
Pt SV, single

-12-



NCBI PubChem

m) National Library of Medicine

National Center for Biotechnology Information

Pub@ hem About  Blog  Submit  Contact

Explore Chemistry
Quickly find chemical informatio m authoritative sources

L% aspirin EGFR C9HBO4 57-2 C1=CC=C({C=C1)C=0 InChl=15/C3H60/c1-3(2)4/h1-2H3

[ Use Entrez

Sy 2 E=

Draw Structure Upload ID List Browse Data Periodic Table

https://pubchem.ncbi.nim.nih.gov/

© PubChem x  +

> C (Y @& pubchem.ncbinlm.nih.gov o®x e =0604¢ | BRG]

m National Library of Medicine

National Center for logy Informat

Pub@hem About  Blog  Submit  Contact

Explore Chemistry

Quickly find chemical information from authoritative sources

Browse

aspirin EGFR C9H804 57-27-2 C1=CC=C(C=C1)C=0 InChi=1S/C3H60/c1-3(2)4/h1-2H3

O useEnt

by LS E=

Draw Structure Upload ID List Browse Data Periodic Table

https://pubchem.ncbi.nim.nih.gov/
26
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DrugBank

@RUGBANK

Browse ~ COoVID-19 Search ~ Downloads Commercial D:

WHAT ARE YOU LOOKING FOR?

h’ylenol

@ Drugs w_e Targets | e Palhways.l w_o Ind"\cal'\ons.w

@ORUGBANK

DrugBank is a pharmaceutical knowledge base that is enabling
major advances across the data-driven medicine industry.

The knowledge base consists of proprietary

y authored content describing clinical level information about
as side effects and drug interactions, as well as molecular level data such as chemica
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Genomics of Drug Sensitivity in Cancer (GDSC

Genomics of Drug Sensitivity in

Cancer

About

Compounds Features News

Genomics of Drug Sensitivity in Cancer

We have characterised 1000 human cancer cell lines and screened them with 100s of compounds
On this website, you will find drug r data and markers of sensitivity.

Search by drug, gene or cell line name

e.q. Docetaxel, RP-56976, BRAF, COLO-829

- Sager

FAQ

MASSACHUSETTS
GENERAL HOSPITAL

CANCER CENTER

What's new?

Release 8.3 (June 2020)

The functionality of the Genomics of Drug
Sensitivity in Cancer database has now
been enhanced with two new data
visualisations. The Combined Analyses
Volcano Plot overlays all tissue specific and
pan-cancer associations to visualize
significant biomarker associatiens across all
context-specific ANOVA analyses. Compare
compound plots the correlation of dose
response results (IC50 or AUC } between
different drugs across the cell line set.

Overview

Coverage
518 compounds targeting 24 pathways

Other, kinases

Browse
DNA replication Compounds

cycle

&

Chromatin histone acetylation

267 Compounds
310904 1C50s

Datasets
GDSC1 GDSC2
Age
from 2010 to 2015 + NEW
Size
987 Cell lines 809 Cell lines

198 Compounds
135242 IC50s

Assay

Resazurin or Syto60  CellTitreGlo
Duration
72 hours 72 hours

Key Publications

Genomics of Drug Sensiti in Cancer
(GDSC): a resource for therapeutic
biomarker discovery in cancer cells.
Yang et al., (2013) Nucl. Acids Res. 41
(Database issue): D955 - D961
(PMID:23180760 & )

q .~
\

https://www.cancerrxgene.org/
C O B Q% gXe9=0coCBEROD 0 - I N - ]

Genomics of Drug Sensitivity in

Cancer

Cell Lines

News Downloads

Genomics of Drug Sensitivity in Cancer

We have characterised 1000 human cancer cell lines and screened them with 100s of compounds.
On this website, you will find drug response data and genomic markers of sensitivity.

Search by drug, gene or cell line name

e.g. Docetaxel, RP-56976, BRAF, COLO-829

Overview

https://www.cancerrxgene.org/

- Sanger

MASSACHUSETTS
GENERAL HOSPITAL

CANCER CENTER

FAQ

What's new?

Release 8.3 (June 2020)

The functionality of the Genomics of Drug
Sensitivity in Cancer database has now
been enhanced with two new data
visualisations. The Combined Analyses
Volcano Plot overlays all tissue specific and
pan-cancer associations to visualize
significant biomarker associations across all
context-specific ANOVA analyses. Compare
compound plots the correlation of dose
response results (IC50 or AUC ) between
different drugs across the cell line set.

4
Datasets
GDSC1 GDSC2
Age
from 2010 to 2015 v NEW
Size
987 Cell lines 809 Cell lines

367 Compounds
310904 IC50s
Assay

198 Compounds
135242 IC50s
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" PART1
— Introduction to pharmacogenomics
* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

" PART2

— Studies related to pharmacogenomics based on machine learning

PROTEIN REPRESENTATIONS

Why protein representations are necessary?

Representation of proteins for machine-learning features that fully
captured wide ranges of properties of the target molecule

-16-




Types of protein representations

Protein descriptors
— Amino Acid Composition (AAC) - 20D
— Dipeptide Composition Descriptor - 400D
— Tripeptide Composition Descriptor - 8000D
— Composition, Transition and Distribution (CTD) - 147D

Protein embedding

Amino Acid Composition —~AAC (20D)

Amino acid compositions for unfiltered sequences from 38 organisms

100- amino ackl

w
v
P
u
L

75
|
v
A
P
(]

0
; c
@
N
u
O | 0| S ROS o BN BSN BRE e B BN Sl BN a5 B8 B3 e &
7] B RS SN S BB BN S RGE RON sa B3R e R e E
i S BN ESE ot BN G0N BN S NN B AN 08 S e e i
X
2 - "

¥
o £S5 AR = Uw o | S | | B P B R A BN 5 N S R
ELESPELSE 2P PSP LIPS PP EL S
336 oo tms 3y pi Goh Chu sp Bew  neq oM ki ple B30 580 Bo pfu mac mha hsal hvo ath @ 5po 308 nue dme cel S o G KR X gga can memu pab haa
e | RN
Archae Eukaryota.
BMC Research Notes volume 11, Article number: 117 (2018) ‘
AY
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Dipeptide (400D) / Tripeptide (8000D)

Composition

## AR RA NA DA cA EA
## 0.003565062 0.003565062 0.000000000 0.007130125 0.003565062 0.003565062
## QA GA HA IA LA KA
## 0.007130125 0.007130125 0.001782531 0.003565062 0.001782531 0.001782531
## MA FA PA SA TA WA
## 0.000000000 0.0053475%94 0.003565062 0.007130125 0.003565062 0.000000000
## YA VA AR RR NR DR
## 0.000000000 0.000000000 0.003565062 0.007130125 0.005347594 0.001782531
## CR ER QR GR HR IR
## 0.005347594 0.005347594 0.000000000 0.007130125 0.001782531 0.003565062
## SAR Has RTLYLN LA CAA EAA
## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## QAA GAA HaA IAA LAA Kaa
## 0.001785714 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## MAA Fas PAA SA4 TAA WAL
## 0.000000000 0.000000000 0.000000000 0.001785714 0.000000000 0.000000000
## YAA VA ARA RRA NRA DRA
## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## CRA ERA QRA GRA HRA IRA
## 0.000000000 0.000000000 0.000000000 0.001785714 0.000000000 0.000000000
## LRA KRA MRA FRA PRA SRA
## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 IS
documentation » previous 10d
Getting Started with PyBioMed
This document is intended to provide an overview of how one can use the PyBioMed functionality from Python. If you find mistakes, or have suggestions for
improvements, please either fix them yourselves in the source document (the .py file) or send them to the mailing list: oriental-cds@163.com and ’ A A C
gadsby@163.com. o
PyBioM

Installing the PyBioMed package

PyBioMed has been successfully tested on Linux and Windows systems. The user could download the PyBioMed package via
https-//raw.githubusercontent.com/gadsbyfly/PyBioMed /master/PyBioMed/download/PyBioMed-1.0.zip. The installation process of PyBioMed is very easy:

You first need to install RDKit and pybel successfully.

On Windows:
(1): download the PyBioMed-1.0.zip

(2): extract the PyBioMed-1.0.zip file

(3): open cmd.exe and change dictionary to PyBioMed-1.0 (write the command “cd PyBioMed-1.0" in cmd shell)

(4): write the command “python setup.py install” in cmd shell

On Linux:
(1): download the PyBioMed package (.zip)
(2): extract PyBioMed-1.0.zip

(3): open shell and change dictionary to PyBioMed-1.0 (write the command “cd PyBioMed-1.0" in shell)

(4): write the command “python setup.py install” in shell

Getting molecules

The PyGetMol provide different formats to get molecular structures, protein sequence and DNA sequence.

o/

Getting Started wit

Installing the Py|
package
Getting molecul
= Getting mole
structure
Reading mol
Getting prot:
Reading prot|
sequence
Getting DNA
Reading DN,
Pretreating stru
= Pretreating r
= Pretreating |
sequence
= Pretreating [
sequence
Calculating mol
descriptors
= Calculating d
= Calculatin
descripto
functions
= Calculatin|
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Composition, Transition and Distribution (CTD),

147D

Sequence M T EIT TAS MV K EUL RE A

T G T G A

=4

Sequence Index 1 10

Transformation 3 2 1 3 2 2 2 3 3 1
Index for 1 1 2
Index for 2
[ndex for 3 2 3 4

1/2 Transitions

1/3 Transitions |

2/3 Transitions

15

Table 1: Amino acid attributes, and the three-group classification of the 20 amino acids by each attribute

Group 1 Group 2 Group 3
Hydrophobicity Polar Neutral Hydrophobicity

RKEDGQN GASTPHY CLV.LMFEW
Normalized van der Waals 0278 29540 403-8.08
Volume

G,ASTPDC NVEQILL MR KRRY
Polarity 4.9-6.2 8.0-9.2 104-13.0

LLEWCMVY PATGS H QR KNED
Polarizability 0-1.08 0.128-0.186 0.219-0.409

6.ASD,T CRNVEQLL BB e
Charge Pasitive Neutral Negative

K R CJ N,CQGHLLMFPSTWY, D E
Secondary Structure Helix Strand Coil

EALMAKR v v cwFET G/N,P,S,D
Solvent Accessibility Buried Exposed Intermediate

ALFRCGLV,W RKQEND

M, S P, T, H Y

N\

https://mran.microsoft.com/snapshot/2017-12-06/web/packages/protr/vignettes/protr.html

: Jupyter Protein_representations Last Checkpoint: 6% % (unsaved changes)

File Edit View Insert Cell Kerne Widgets Help
B+ 3 & B 4 ¥ MRun B C W Code v @3
mi ] AAU=AALOMPOSItION. LalculateAAU Ipept Idetomposition(protein)
print (AAD)
In [ 1: len(AAD)

Using PyBioMed - CTD descriptor

In [ ]: from PyBioMed.PyProtein import CTD

protein_descriptor = CTD.CalculateCTD(protein)
print (protein_descriptor)

In [ ]: print (len(protein_descriptor))

r

Logout

Control Panel

‘ Python3 O
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ProtVec (asgari et al. ,PLoS ONE 10(11): 0141287, 2015)

" Continuous distributed representation of biological sequences

for deep proteomics and genomics
— ProtVec: “unsupervised data-driven distributed representation for
biological sequences”
— Each sequence represented as n-dimensional vector
* Characterizes biophysical and biochemical properties

* Determined using neural networks

woman girl
slower

man
'\\ father 4‘ slow /
son

cat king queen boy

slowest
dog \ mother Q‘ faster
daughter

cats fast

dogs France

England longer
he fastest
Paris Italy \ she long
I.ondon/

himself
longest
herself &
Rome

Apply to proteins as well? = ProtVec

ProtVec

" Use large corpus of sequences to train representation
— E.g.) Swiss-Prot with 546,790 manually annotated and reviewed
sequences
— Break sequences into subsequences (i.e. biological words)

— Training of the embedding through the Skip-gram neural network
» for protein sequences: usage of a vector size of 100 and a context size of
25
* - every 3-gram is represented as a vector of size 100

Original Sequence
DA FSAEDVLKEY DRRRRMEAL..
Splittings
1) MAF, SAE, DVL, KEY, DRR, RRM, ..
9) AFS, AED, VLK, EYD, RRR, RME, ..
3) FSA ,EDV, LKE, YDR, RRR, MEA, ..

Asgari et al. ,PLoS ONE 10(11): e0141287, 2015
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" PART1
— Introduction to pharmacogenomics
* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

" PART2

— Studies related to pharmacogenomics based on machine learning

MOLECULAR REPRESENTATION

Why molecular representations are necessary?

O
/
\N N
())\)NK/EN/> /\

Representation of chemical compounds for machine-learning features
that fully captured wide ranges of chemical and physical properties of
the target molecule
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Types of molecular representations

" Molecular descriptors
" Molecular fingerprints

Molecular descriptors

" Molecular descriptors are numerical values that characterize
properties of molecules

" The goal of a molecular descript is to provide a numerical
representation of molecular structure

" There are numbers of molecular descripts vary in complexity
of encoded information

®) | MW?
~ N /\
fﬁ ) 194.08
0 ’Tl N
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Molecular descriptors

///\

0800 O\g/o
S o %;f %
;oo gﬁ\

1) OD-descriptors (Molecular formula, i.e. Molecular weights, atom counts, bond counts),
2) 1D-descriptors (Chemical graph, i.e. Fragment counts, functional group counts),

3) 2D-descriptors (Structural topology, i.e. Wiener index, Balaban index, Randic index,
BCUTS),

4) 3D-descriptors (Structural geometry, i.e. WHIM, autocorrelation, 3D-MORSE, GETAWAY),
5) 4D-descriptors (Chemical conformation, i.e. Volsurf, GRID, Raptor)

Grisoni F., Ballabio D., Todeschini R., Consonni V. (2018) Molecular Descriptors for Structure—Activity
Applications: A Hands-On Approach. In: Computational Toxicology. Methods in Molecular Biology, vol 1800.

Molecular fingerprints

" Fingerprint representations of molecular structure and
properties are a particularly complex form of descriptors.
Fingerprints are typically encoded as binary bit strings whose
settings produce, in different ways, a bit “pattern”
characteristic of a given molecule.

" Fingerprints are designed to account for different sets of
molecular descriptors, structural fragments, possible
connectivity pathways through a molecule, or different types

of pharmacophores.

N+

[ofofajofofofajojofa]
https://doi.org/10.1016/j.ymeth.2014.08.005
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Types of fingerprints

e N

Structural based

Pattern-based FP

Topological Path-based FP
Circular FP
Pharmacophore FP

Neural network based Graph-based representation

Molecular embedding

MACCS, PubChem, FP3,
FP4

Daylight, FP2
ECFP2, ECFP4, ECFP6
2D pharmacophore

GNN (graph convolutional
network (GCN), graph
attention network (GAT),
gated graph neural
network (GGNN), ...)

seq2seq, mol2vec

Pattern based fingerprints

SMARTS pattern

PubChem Fingerprint

+  E7 SMARTS pattern - E 7|20 Z ot «  PubChemOf A H|A|SH St A RE 7|8t = ot
IR PN B K| 2 HE X} (881 bit vector)
Key position Key description Annotation Sections Description
11 o Radciadoiadoind | 4M Ring Section 1 (#0~#114) Hierarchic element counts
12 [Cu,Zn,Ag,Cd,Au,Hg] Group IB, 1I1B Section 2 (#115~#262) | Rings in a canonic Extended Smallest
13 [48]~[#7](~[#6])~[#6] ON(C)C Set of Smallest Rings ring set
14 [#16] - [#16] s Section 3 (#263~#326) | Simple atom pairs
_ Section 4 (#327~#415) | Simple atom nearest neighbors

Section 5 (#416~#459)

Detailed atom neighborhoods

MACCS fingerprint SMARTS pattern 7| = H

Section 4

(#460~#712) | Simple SMARTS patterns

v" MACCS fingerprints (166 keys)

Section 4

(#713~#880) | Complex SMARTS patterns

v FP3, FP4 fingerprints from OpenBabel

PubChem fingerprints bit'& description

. EXIH™
= on

- 0|0] Zo|El ot 2| =2 7S LEHSHY E 8 &= X
7EotLE 0|2o =5 BolY = QlF

- JUHH2=Z HE ZO[7t EE

Z4 AH
(= Ry

THAXAZ OF? = HAM0f
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Path-based fingerprints

. °JXf§ JZEorRE linear fragment E nofSt= YA CE ogtE X2 A= E HAHY
+ Ol (hashing) ¥102|EF2 AtE%
+ 23 Fingerprints
v' FP2 fingerprints (1,021 bit vector)
v" RDK fingerprints, Layered fingerprints (RDKit), CDK fingerprints (CDK)
H
N (o]
- ofd €25 Agstol ohdet
St +=& #old = UL ALEAIL c c o M
20| T 4 93 S
-t ath length =1
- o19 REOIAFEAIAOl B glg o
- X 287AHX2| resolution S A \ = /
O|-—| El Koﬂ [[l_El_ :}-El_xl A 9)\% path length = 2 " " " H
- N N N
- Bit collision1 bit space EH|E D2{st v £y PO
7Iolol X|_'_j?|:o;I XI‘E XI-E Z-\lol path length =3

of2i=

v v 5

N N N
# 50 /7 ~N

H

S

Z 0|0 [H2 fragment == Of| A|

https://docs.eyesopen.com/toolkits/python/graphsimtk/fingerprint.html#section-fingerprint-path

Morgan/Circular fingerprints

b~ o = =~ = =LO =
« OILtO| JIAE 7|E L2 FOIT BHE Lo 5t 1= HEE
O’/\Y”O axt=oz EI-AHz'j'.i 7|
=
L + 8} 4(hashing) 7| &S AFESH0] EX 20| Lo
N XS E X} Hrstetof A2 Bt
Diameter 0: Identifiers:
g
P z
« ZHH Fingerprints yd T
v" Morgan/Circular fingerprints . / Diameter 2 esos2ses
v’ ECFPs (ECFP4, ECFP6), FCFPs - - S Y A U G (D SR
\\ — N - - 1191819827
N oameter s 1844215264
\\ 0 x x o -
. =3y At
- = il N x . N -
- 0|0 ZolEl F+=71 ot o9 =0 A N e R
S ES 3
I:H '—I- :H:o'—:l Ol 7|- o d Identifier list representation:
- 7:”A|_|' z_‘|\—57|' HHl‘% ~1266712900 -1216014205 78421366 887929888 0;6894788 ~748082560 798038402 -690148606 1191819K27
= — | L 1687725 5474588 10799588 04704513
- MHEQ Fx HEE ®Hst=0| =
-lc-)rg'_é_l' I—l' 6"—?—' ?‘E 7D-IA—IIII O‘”E Hash function
&Il '6l;||-'c')'|_xl E)_é!‘% Fixed- Iength blnalylepre{e/; —
) o Al‘A'l 714 M O‘” o SHSh 01800000001600001 100001600 1000000000 1010000000000000000000000 10100100000000000000000
T o a1 ==

ECFP fingerprint2| At&
https://docs.chemaxon.com/display/docs/Extended+Connectivity+Fingerprint+ECFP

Bit collisions

2%t

-25-




:‘ Jupyter Generate_FPs Last Checkpoint: 482 & (autosaved)

File Edit View nsert Cell Kerne Widgets Help

B+ x @& B & ¢ MRin B C » Code v

1. Using RDKkit
Descriptors, MACCSkey, Morgan

In[ ] from _future__
import rdkit
from rdkit import Chem
from rdkit.Chem import rdMolDescriptors # #o
from rdkit.Chem import Descriptors
import rdkit.rdBase
from rdkit.Chem.MACCSkeys import GenMACCSKeys
from rdkit.Chem import AllChem
from rdkit.Chem import Draw

import absolute_import

m= Chem MoIFromSm\Ies( LNWC:NCS:ML( 0JN(C(=0)N2C)C

from rdkit.Chem.Draw import [PythonConsole #Veeded to she

from rdkit.Chem.Draw.MolDrawing import MolDrawing,
%matplotlib inline
m

In [ 1: rdMolDescriptors.CalcExactMolWt(m) # returns the mo

In [ ]: Descriptors.MolLogP(m)

In [ ]: rdMolDescriptors.CalcMolFormula(n) # refurns the mo/

In [ ]: rdMolDescriptors.CalcNumHBA(m) # returns the number

m T 10 mAMA I NAmAr i mbArm OAlARUDNEmY  # eniiimmn bhn oimban a4 L

"y # caffi

oW
DrawingOp

fecule” s exact molecular weight

ecule” s formula
of H-bond acceptors fo

a molecule

hand dumava £

F Logout Control Panel

#0nly needed /f modifying defaults

GNN

Graph neural networks (GNNs) are
connectionist models that capture
the dependence of graphs via
message passing between the nodes
of graphs.

— Extract features by considering the
structure of the data

— Enables automatic feature extraction
from raw inputs

— can embed the drug(molecule) into
vectors which has topological structure
information with edge and atom features

* With end to end learning, the
model can learn data driven
features

X

IXLXE
[XT
KIXT

(a) 2D Convolution. Analogous
to a graph, each pixel in an image
is taken as a node where neigh-
bors are determined by the filter
size. The 2D convolution takes
the weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of a

node are ordered and have a fixed
size.

l>\|\ / |

X

Yy s
@

£\

e

=

(b) Graph Convolution. To get a
hidden representation of the red
node, one simple solution of the
graph convolutional operation is
to take the average value of the
node features of the red node
along with its neighbors. Differ-
ent from image data, the neigh-
bors of a node are unordered and
variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

https://arxiv.org/abs/1901.00596

-2
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Graph Neural Network

"  Message Passing : aggregate information from neighbors

m,(,tH) = message_passing({h‘(,f) ,Yw € N(v)})
" Update : with message passing, update the hidden representation

hi+l = ypdate(mH, K1)
® Readout : represent graph with all hidden representations

httt = readout(hitt,vv € G)

hg =Xy
N(v) : set of nodes adjacent to v
hgt) hi+1
e © GNN Layer -~ . Readout
R h*
. > - ) .
h Message passing hst
Y WET 0 Upsate et . Graph
u s EE= het representation
A® H hi*t [
6
HE = [
hgt) h%“
[ | | |
h% : hidden embedding vector of node v at t-th GNN layer 5%

Graph Neural Network

" Message passing

— Message : Information that flows between neighbors and the target node

— message_passing : function that aggregate neighbor information of target node at t
time step with propagation rule

m{ ™ = message_passing((h ,vyw € N(v)})

/ h? \
t-1
H Em e <:: S
(t)
h t-1
Target node 2 .- Update Messgge passing hg )

\ h(t)

hgt—n
© s Wl 3 o
hy (t-1)
- hét) thl) h,6
B© |
6 -
\B -1
HE = B 3
h(t) 5
d )
(t+1) _ ; ® @ @
\ [ || my = message_passing({h;” , hy’, hg &/

S9N
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\_

Graph Neural Network

Update

— update : function that update the t+1 time step hidden representation with t time step
node representation and message passing

hf,+1 (t+1) h(t))
» Iy

= update(m,

4 o
C

)

<: m \

hgt—l)

Target node 2’ HN Update Messége passing
(t=1)
h
(® B- {
® b . —
E ® il h
t
| he
e || \B e
.. . hgt) 3
i (t+1) - ®© O O
[ my = message_passing({h,” ,h,", he"})
st = update(m$, Ry //
— %

-

Graph Neural Network

Readout

— readout : function that represent the graph calculated by all hidden

representations

httt = readout(hbtt,vv € G)

h§+1 \
L DR |
it AR |
I Gl | |
t+1
- hs - hEt = readout( S MEEE ) = | HN
hi+1 h§+1 .
. he oot
t+1 o M
h
. 6 . h5+1 -
h5+1 }
o’
. o1
-5\
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Graph Neural Network Models

" Semi —Supervised Classification with Graph Convolutional Networks (GCN)
" |nductive Representation Learning on Large Graphs (GraphSAGE)

" Neural Message Passing for Quantum Chemistry (MPNN)

®  Graph Attention Networks (GAT)

" How Powerful Are Graph Neural Network? (GIN)

" Analyzing Learned Molecular Representations for Property Prediction
(DMPNN)

— Various Message passing, Update, Readout function

57

To be continued.

1P
2 BR
3
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" PART1

Contents

— Introduction to pharmacogenomics

* Drug discovery and development

— Key data sources

— Representations of proteins, chemicals

" PART2

— Studies related to pharmacogenomics based on machine learning

CYP450 VARIATIONS AND DRUG

RESPONSES
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Pharmacogenomics and drug metabolism

" A patient’s genetic makeup and their response to
pharmaceutical drugs are seen with regards to their
metabolism

Ultra-rapid Normal Poor
Metabolizer Metabolizer Metabolizer
Under-dosed: Expected Over-dosed:
. Adverse drug
Lack of efficacy response .
reactions

Cytochrome P450 enzymes

" The super-family of cytochrome P450 enzymes has a crucial
role in the metabolism of drugs

" CYPs are the major enzymes involved in drug metabolism,
accounting for about 75% of the total metabolism

" Most drugs undergo deactivation by CYPs, either directly or by
facilitated excretion from the body

CYP3A4/5 1 36%
cvppe ] 9%

cvpacg/o ] 16%

cvpia2 [ ] 1%

cvpac1o ] 8%

(o771 R —

cvp2e ] 3%

CYP2A6 3%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

e.g. ) Proportion of antifungal drugs metabolized by different families of CYPs.

https://en.wikipedia.org/wiki/Cytochrome_P450#Drug_metabolism
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CYP450 isozymes

" Humans have 57 genes and more than 59 pseudogenes

divided among 18 families of cytochrome P450 genes and 43

subfamilies

Family | Function

cypy | drue and steroid (especially estrogen) metabolism, benzolzlpyrene
tosification (forming (+)-benzo[slpyrene-7,8-dihydrodiol-9,10-epoxide)

CYP2 |drug and steroid metabolism
CYP3 | drug and steroid (including testosterone) metabolism

CYP4 | arachidenic acid or fatty acid metabolism

CYP5 | thromboxane A, synthase

C¥P7 | bile acid biosynthesis 7-alpha hydrosylase of steroid nucleus
CYP8 | varied

CYP11 | steroid biosynthesis

CYP17 | steroid biosynthesis, 17-alpha hydroxylase

CYP19 | steroid biosynthesis: aromatase synthesizes estrogen

CYP20 | unknown function
CYP21 | steroid biosynthesis

CYP24 | vitamin D degradation
CYP26 | retinoic acid hydroxylase
CYP27 | varied

CYP39 | 7-alpha hydroxylation of 24-hydroxycholesterol

CYP46 | cholesterol 24-hydroxylase

CYP51 | cholesterol biosynthesis

Members
3 subfamilies, 3 genes,
1 pseudogene

13 subfamilies, 16
genes, 16
pseudogenes

1 subfamily, 4 genes,
4 pseudogenes

6 subfamilies, 12
genes, 10
pseudogenes

1 subfamily, 1 gene

2 subfamilies, 2 genes
2 subfamilies, 2 genes

2 subfamilies, 3 genes

subfamily, 1 gene
subfamily, 1 gene
subfamily, 1 gene

subfamilies, 1 gene,

pseudogens

subfamily, 1 gene

3 subfamilies, 3 genes
3 subfamilies, 3 genes

1 subfamily, 1 gene
1 subfamily, 1 gene, 1
pseudogene
1 subfamily, 1 gene, 3
pseudogenes

Genes

CYP1A1, CYP1A2, CYP1B1

CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2CY, CYP2C18, CYP2C19,
CYP2D&, CYP2E1, CYP2F1, CYP2J2, CYP2R1, CYP251, CYP2U1, CYP2W1

CYP3A4, CYP3AS, CYP3AT7, CYP3A43

CYP4A11, CYP4A22, CYP4B1, CYP4F2, CYPAF3, CYP4FE, CYP4F11, CYP4F12,
CYP4F22, CYP4V2, CYPAX1, CYPAZ1

CYP5A1

CYP7A1, CYP7B1

CYPBAT (prostacyclin synthase), CYPBB1 (bile acid biosynthesis)

CYP11A1, CYP11B1, CYP11B2

CYP17A1

CYP19A1

CYP20A1

CYP21A2

CYP24A1
CYP26A1, CYP26B1, CYP26C1T

CYP27AT (bile acid biosynthesis), CYP2781 (vitamin D3 1-alpha hydroxylase,
activates vitamin Dg), CYP27C1 (unknown function)

CYP39A1

CYP46A1T

CYP51A1 (anosterol 14-alpha demethylase)

https://en.wikipedia.org/wiki/Cytochrome_P450#Drug_metabolism

pseudogenes

CYP1D1P

Too many to list

CYP3A51P, CYP3AS52P,
CYP3A54P, CYP3AT37P

Too many to list

CYP21A1P

CYP46A4P

CYP51P1, CYP51P2,
CYP51P3

CYP2D6 alleles

CYP2D gene locus .

e
CYP2D&P
(pseudogene)

Fl
,

rl
¥
’

CYP2D7
(pseudogene)

ra
,f” — e
High-function alleles
; (gene duplications)
*1x2, *2x2 and *35x2
.
p :

Mormal-function alleles
(e.g., "1, "2 and "35)

-

Low-function alleles
(e.g., *10, *17 and *41)

~

MNull-function alleles
(e.q., *3,"4, "5, "6, 7,
*31 r12| 1|13I ‘14, n15.‘
*16, *18, *19, *20, *21,

= *38 and s0 on)
4

https://www.futuremedicine.com/doi/10.2217/fmeb2013.1

3.130
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Related study:
prediction of CYP2D6 haplotype function

Transfer learning enables prediction of
CYP2D6 haplotype function

Gregory Mclnnes ', Rachel Dalton 2'3, Katrin Sangkuhl 4, Michelle WhirI-CarriIIod, ‘‘‘‘‘‘‘‘‘‘
Seung-been Lee»®, Philip S. Tsao:%?, Andrea Gaedigk®, Russ B. Altman*'%%, Erica wem octes [ e
L. Woodahl?# wand |
e S e
e W

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
haplotype function. PLoS Comput Biol 16(11): €1008399. https://doi.org/10.1371/journal.pcbi.1008399

Related study:
prediction of CYP2D6 haplotype function

" CYP2D6 is an enzyme expressed in the liver that is responsible
for metabolizing more than 20% of clinically used drugs

" More than 130 haplotypes comprised of single nucleotide
variants (SNVs), insertions and deletions (INDELs), and
structural variants (SVs) have been discovered and catalogued
in the Pharmacogene Variation Consortium
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Related study:
prediction of CYP2D6 haplotype function
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Data %“mw: @ .
— Pre-training with 50,000 randomly selecting T Q S
a pair of CYP2D6 star alleles with curated O
function, Pre-training with 314 in vivo data - @ .
— Fine-tuning with PharmVar data

Model -3 CNN + 2 FC

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
haplotype function. PLoS Comput Biol 16(11): €1008399. https://doi.org/10.1371/journal.pcbi.1008399
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Fig 2. Star allele classification results. The figure depicts performance metrics for the prediction of star allele function in the training and validation sets; confusion
matrices for class prediction in training and validation are shown in (a) and (b), for Hubble.2D6 and in (c) and (d) for the baseline model. (e) shows the frequency of
predicted function for uncurated star alleles.

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399
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Fig 3. Prediction of star allele function with in vifre data. The figures summarize the distribution of metabolic activity measured in vitro for star alleles whose function
was predicted by Hubble. The distribution of functional activity is shown in (a) and (b) for star alleles with CPIC-assigned clinical function assignments. (a) star alleles
included in the training process are depicted with a triangle, and those held for testing are depicted with a circle. Error bars depict the standard error of the measured
function. The outer edge of each point indicates the true, curator-assigned phenotype, while the inner color represents predicted function. (b) distribution of values for
each predicted functional class for data shown in (a). (c) star alleles without assigned function status; colors represent the predicted function. (d) variance in measured
activity of the star alleles for each predicted label for data shown in (c).

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
haplotype function. PLoS Comput Biol 16(11): €1008399. https://doi.org/10.1371/journal.pcbi.1008399

GENETIC VARIATIONS AND DRUG
RESPONSES
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Related study:
prediction of cancer cell sensitivity to drugs

= Genomic features
— MSI, variations, CNV

= Simple neural network

OPEN aACCESS Freely available online @'PLOS | GHE

Machine Learning Prediction of Cancer Cell Sensitivity to
Drugs Based on Genomic and Chemical Properties

Michael P. Menden', Francesco lorio'?, Mathew Garnett’, Ultan McDermott?, Cyril H. Benes®,
Pedro J. Ballester'*, Julio Saez-Rodriguez'*

1 Ewropean Bioinformatics Institute, Wellcome Trust Genome Campus-Cambridge, Cambridge, United Kingdom, 2 Cancer Genome Project, Wellcome Trust Sanger
Institute, Welleome Trust Genome Campus—Cambeidge, Cambridge, United Kingdorm, 3 Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center
and Harvard Medical School, Charlestown, Massachusetts, United States of America

Experiments Cell line features
' Neural network Prediction
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Sequence variation o £
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g?: & weight, rule%f';ive, e¥c, A= & pre ::1?
(OC. Fingerprints: CDK, PubChem, | 9
PaDEL- Klekota-Roth, Estate, etc.

SMILES Descriptor Drug features

Menden, Michael P., et al. "Machine learning prediction of cancer cell sensitivity to drugs based on genomic and
chemical properties." PLoS one 8.4 (2013): €61318.

Related study:
prediction of cancer cell sensitivity to drugs
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Figure 2. Comparison of single-drug models and the multi-drug model. The performance of the multi-drug model (red asterisk) and the
family of 111 single-drug models (blue histogram) is represented using three different metrics: (A) Pearson correlation Ry, (B) coefficient of
determination R%, and (C) root mean square error RMSE.

doi:10.1371/journal.pone.0061318.g002

T EMSE:O.SB Counts
p=0.85

T 02 %g *  Genomics of Drug Sensitivity in Cancer (GDSC) project
%N— gzﬁ e mutational status of 77 oncogenes
3 _| ﬁ% * 639 cancer cell lines
ﬁ ‘554 * 131 drugs
S S 4 * 67,488 possible drug response

+ » 8-fold cross-validation

observed Iog(ICSO)

Menden, Michael P., et al. "Machine learning prediction of cancer cell sensitivity to drugs based on genomic and
chemical properties.” PLoS one 8.4 (2013): €61318.
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Related study:
prediction of cancer cell sensitivity to drugs
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Chang, Yoosup, et al. "Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug
Effectiveness from Cancer Genomic Signature." Scientific reports 8.1 (2018): 8857.

Related study:
prediction of cancer cell sensitivity to drugs

a
CDRscan (mean of five models) Random Forests SVM
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* multi-fold cross validation (five-fold with each fold)

Chang, Yoosup, et al. "Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug
Effectiveness from Cancer Genomic Signature." Scientific reports 8.1 (2018): 8857.
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PROTEIN SEQUENCE AND DRUG
INTERACTIONS

Prediction of drug-target interaction

Imatinib

BCR/ABL fusion protein

-38-




DTI prediction using protein descriptors

Large-Scale Prediction of Drug-Target Interactions l
1

from Deep Representations

Peng-Wei Hu Keith C.C. Chan Zhu-Hong You
Department of Computing
Hong Kong Polytechnic University
Hung Hom, Kowloon
Hong Kong
{csphu, cskechan, esyzhuhong }@comp.polyu.edu.hk

A

MFDR employed stacked Auto-Encoder(SAE) to abstract Aucsfec:ce:aef
original features into a latent representation with a small

dimension. With latent representation, they trained a

support vector machine(SVM), which performed better

than previous methods, including feature-and similarity-

based methods.
Machine

Chan, Keith CC, and Zhu-Hong You. "Large-scale prediction of drug- ‘ ﬁ
target interactions from deep representations." Neural Networks

(JICNN), 2016 International Joint Conference on. |EEE, 2016.

Multi-scale features deep representations
inferring interactions (MFDR)

DTI prediction using protein descriptors
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DTI prediction using protein sequence

Bioinformatics, 34, 2018, 821-i829
doi: 10.1093/bioinformatics/bty593
ECCB 2018

DeepDTA: deep drug-target binding
affinity prediction
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Fig. 2. DeepDTA model with two CNN blocks to learn from compound
SMILES and protein sequences
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DTI prediction using protein sequence
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interactions via deep learning with
convolution on protein sequences
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— Embedding representation of protein
works well

Model can capture local residue
patterns

Performance

Lee |, Keum J, Nam H (2019) DeepConvDTI: Prediction of drug-target interactions via deep learning with convolution on protein
sequences. PLoS Comput Biol 15(6): €1007129. https://doi. org/10.1371/journal.pcbi.1007129
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e Compare pooled convolution result with binding sites from sc-PDB

A Protein and ligand B Binding site and ligand
of 1a7x_1 of 1a7x_1

Cc Protein and ligand D Binding site and ligand
of 1ny3_1 of 1ny3_1

\ﬂ%&\?é *  MAPK2 [Kinase]

Number of convolution results coverlng residue

0 1 2 3<

Lee |, Keum J, Nam H (2019) DeepConvDTI: Prediction of drug-target interactions via deep learning with convolution on protein
sequences. PLoS Comput Biol 15(6): €1007129. https://doi. org/10.1371/journal.pcbi.1007129

Nt F”.T"’-"’-‘;,.'E,ffz'-‘o'f;,- """" oo T T ABL s matinib
|1 Fingerprin V! N Complex
'y ] 1
.- E ~ @Bl P -
! —
. M=k
" 5
1 .
. - S e
1
|
B ™ — _::’ (CLW..Py) .
Transformer Transh . H
modules for ":'a:s |° m;e: H
2 binding region oduies:1o N :

CNN DTI prediction

(BR) prediction

[
!

\

v
}_
=

P

2
)
=
=
m
Ta)
=)
=
o)
c2)

1. Data Prepeparation 2. Featurization 3. Transformers 4. Prediction and Evaluation

Fig. 1. HoTS model overview. HoTS considers amino acid sequences of individual proteins and Morgan/circular fingerprints of drug compounds. Therefrom. local residue patterns are
extracted by a convolutional neural network, and maximum values are pooled from each protein grid. Compound and protein grids are taken into transformers to model interactions between
local residue patterns and individual compounds. After passing the transformers, a compound token is used to predict DTIs, and individual protein grids are used to reflect binding regions

(BR). For DTI prediction, HoTS calculates a prediction score Ppyy ranging from 0 to 1 and center (C), length (W), and confidence (P) scores for binding regions.

Ingoo Lee, Hojung Nam*, "Sequence-based prediction of binding regions and drug-target interactions", Under review. S
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Fig. 3. Prediction and visualization of binding regions on 3D-complexes. A) Predicted

binding regions for drug-target interactions between HDAC2_HUMAN and N-(4-amino-

Spe

biphenyl-3-yl)benzamide (LLX). B) Visualization of predicted binding regions on the 3D
. . Fig. 4. Prediction performance for drug-target interactions in the independent test
complex of human HDAC2 complexed with LLX (Protein Data Bank: 3MAX). C) Pre-
datasets.
dicted binding regions between GNAS2_BOVIN and 5’-g ine-diphosph hi-

F P

ophosphate (GSP). D) Visualization of predicted binding regions on the 3D complex of
bovine GNAS2 complexed with GSP (Protein Data Bank: 1CUL).

Ingoo Lee, Hojung Nam*, "Sequence-based prediction of binding regions and drug-target interactions", Under review. ‘

GENE EXPRESSION AND DRUG
RESPONSE
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Related study:
prediction of cancer cell sensitivity to drugs

DeepDSC: A Deep Learning Method to
Predict Drug Sensitivity of Cancer Cell Lines

Min Li, Yake Wang, Ruiging Zheng, Xinghua Shi, Yaohang Li, Fang-Xiang Wu, and Jianxin Wang
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* GDSC, CCLE

* Transcriptomic feature
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* Morgan fingerprint

¢ Autoencoder based feature extraction
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Li, Min, et al. "DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines." IEEE/ACM
transactions on computational biology and bioinformatics (2019).

Related study:
prediction of cancer cell sensitivity to drugs

method NN KBMF RF DeepDSC

cv RMSE 0.83 0.83+/- 0.75+/- 0.52+/-0.01
1.00 0.01

R: 0.72 0.32+/- 0.74+/- 0.76+/-0.01
0.37 0.01

LOTO RMSE 0.99 NA 0.81+/- 0.64+/-0.05
0.16

R: 0.61 NA 0.72+/- 0.66+/-0.07
0.08

LOCO RMSE NA 0.85+/- 1.40+/- 1.24+/-0.74
041 0.50

R: NA 0.52+/- 0.13+/- 0.04+/-0.06
0.37 0.11

* 10-fold cross-validation
* Better performance than typical machine learning methods

* Deep learning based feature extraction

Li, Min, et al. "DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines." IEEE/ACM
transactions on computational biology and bioinformatics (2019).
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Related study:
prediction of cancer cell sensitivity to drugs
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Chiu, Yu-Chiao, et al. "Predicting drug response of tumors from integrated genomic profiles by deep neural networks."
BMC medical genomics 12.1 (2019): 18.
Related study:
°
prediction of cancer cell sensitivity to drugs
Measurement DeepDR Linear regression SVM Random initialization PCA Eenc Only Manc Only
Median MSE in testing samples® 1.96 1024° 8.92° 230 244 196 3.09
Median number of training epochs® 14 - - 9 29 17 95
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* Samples with mutation showed significantly different result compared
to non-mutated samples

Chiu, Yu-Chiao, et al. "Predicting drug response of tumors from integrated genomic profiles by deep neural networks."
BMC medical genomics 12.1 (2019): 18.
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Related study:
prediction of cancer cell sensitivity to drugs
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SM I LES Figure 1. Multimodal end-to-end architecture of the proposed

encoders. General framework for the explored architectures. Each

model ingests a cell—compound pair and makes an IC50 drug

sensitivity prediction. Cells are represented by the gene expression

values of a subset of 2128 genes, selected according to a network
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string (apart from the baseline model that uses 512-bit fingerprints).

n |nterpretab|e The gene-vector is fed into an attention-based gene encoder that

assigns higher weights to the most informative genes. To encode the

SMILES strings, several neural architectures are compared (for details

see section 2) and used in combination with the gene expression
encoder in order to predict drug sensitivity.

Manica, Matteo, et al. "Toward explainable anticancer compound sensitivity prediction via multimodal attention-based
convolutional encoders." Molecular Pharmaceutics (2019).
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