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안녕하십니까?

한국생명정보학회의 동계 워크샵인 BIML-2021을 2월 15부터 2월 19일까지 개최합니

다. 생명정보학 분야의 융합이론 보급과 실무역량 강화를 위해 도입한 전문 교육 프

로그램인 BIML 워크샵은 2015년에 시작하였으며 올해로 7차를 맞이하게 되었습니다. 

유례가 없는 코로나 대유행으로 인해 올해의 BIML 워크숍은 온라인으로 준비했습니

다. 생생한 현장 강의에서만 느낄 수 있는 강의자와 수강생 사이의 상호교감을 가질 

수 없다는 단점이 있지만, 온라인 강의의 여러 장점을 살려서 최근 생명정보학에서 

주목받고 있는 거의 모든 분야를 망라한 강의를 준비했습니다. 또한 온라인 강의의 

한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 

BIML 워크샵은 전통적으로 크게 생명정보학과 AI, 두 개의 분야로 구성되어오고 있으

며 올해 역시 유사한 방식을 채택했습니다. AI 분야는 Probabilistic Modeling, 

Dimensionality Reduction, SVM 등과 같은 전통적인 Machine Learning부터 Deep 

Learning을 이용한 신약개발 및 유전체 연구까지 다양한 내용을 다루고 있습니다. 생

명정보학 분야로는, Proteomics, Chemoinformatics, Single Cell Genomics, Cancer 

Genomics, Network Biology, 3D Epigenomics, RNA Biology, Microbiome 등 거의 모

든 분야가 포함되어 있습니다. 연사들은 각 분야 최고의 전문가들이라 자부합니다. 

이번 BIML-2021을 준비하기까지 너무나 많은 수고를 해주신 BIML-2021 운영위원회

의 김태민 교수님, 류성호 교수님, 남진우 교수님, 백대현 교수님께 커다란 감사를 드

립니다. 또한 재정적 도움을 주신, 김선 교수님 (AI-based Drug Discovery), 류성호 교

수님, 남진우 교수님께 감사를 표시하고 싶습니다. 마지막으로 부족한 시간에도 불구

하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 강의자료를 만드는데 노력하셨을 뿐만 

아니라 실시간 온라인 Q&A 세션까지 참여해 수고해 주시는 모든 연사분들께 깊이 

감사드립니다. 

2021년 2월 

한국생명정보학회장 김동섭



 

 

AI-based drug discovery 
 

Sun Kim group 
Department of Computer Science and Engineering, Bioinformatics Institute, Seoul National 

University, Seoul, Korea 
 
In this tutorial, we will deliver recent developments in AI-based drug discovery. Since drug 
discovery is a very wide and complicated area of research,  we will begin by explaining basic 
concepts and database resources on small-molecule drug or compound; target of drug; molecular 
signature before and after  drug treatment; and phenotype such as drug sensitivity, toxicity, side 
effect, LADME (liberation, absorption, distribution, metabolism, and excretion). Then,  in Part 2 of 
this tutorial, we will spent time to explain why AI-based drug discovery has emerged. Traditional 
drug discovery focused on predicting targets and phenotypes directly. Related research topics 
have been extensively investigated in the context of valid compound design,  pharmacodynamics 
and pharmacokinetics.  However, gap between compounds and phenotypes are big and wide. As 
molecular profiling techniques from genome and epigenome sequencing have been developed 
rapidly over the years, a relatively new concept called pharmacogenomics has emerged and has 
been extensively studied. In fact, information at the molecular level can be a bridge between 
compounds and phenotypes, which can be an innovative technology for drug discovery.  However, 
computational analysis of data for drug discovery has become much more challenging since 
traditional concepts, such as valid compound design,  pharmacodynamics and pharmacokinetics, 
already difficult computational problems and adding genomics dimension increases search space 
dramatically on top of already extremely large search space of the drug discovery problem. 
Fortunately, recent development of AI, deep learning, and graph mining technologies  has begun to 
shed light on this daunting computational problem. In Part 3, we will introduce some of the 
representative examples of  AI-based drug discovery technologies.  A list of examples are: 
reinforcement learning for de novo molecule design, GAN and autoencoder for compound design, 
deep learning models for drug activity prediction, junction tree variational auto encoder for 
generating valid molecules, deep learning and symbolic AI for planning chemical syntheses, 
mixture representation learning for toxicity prediction, deep learning models for drug target 
interaction, GAN model for generating compounds from molecular biology data, and deep learning 
model for pharmacogenomcs study. 
 



AI-based Drug Discovery

Sun Kim @ Seoul National University

KSBi-BIML
2021

본 강의 자료는 한국생명정보학회가 주관하는 KSBi-BIML 

2021 워크샵 온라인 수업을 목적으로 제작된것으로 해당

목적 이외의 다른 용도로 사용할 수없음을 분명하게 알립니

다.  수업 목적으로 배포 및 전송 받은 경우에도 이를 다른

사람과 공유하거나 복제, 배포, 전송할 수없습니다. 

만약 이러한 사항을 위반할 경우 발생하는 모든 법적 책임은

전적으로 불법 행위자 본인에게 있음을 경고합니다.
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Recent Amazing Progress 
on AI-based Drug Discovery 

• We were amazed how rapidly AI-based drug discovery 
techniques have been developing!

• Today, we present 
• Our view on AI-based drug discovery

• Introducing recent exemplary successes in this field.

https://www2.deloitte.com/content/dam/insights/us/articles/32961_intelligent-drug-discovery/DI_Intelligent-Drug-Discovery.pdf
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https://www2.deloitte.com/content/dam/insights/us/articles/32961_intelligent-drug-discovery/DI_Intelligent-Drug-Discovery.pdf

Drug Discovery 

• Drug discovery is resource intensive, and involves typical time-
lines of 10–20 years and costs that range from US$0.5 billion to 
US$2.6 billion. Artificial intelligence promises to accelerate this 
process and reduce costs by facilitating the rapid identification of 
compounds.

• https://www.nature.com/articles/s41587-019-0224-x

• 오늘 강연은 small molecule drug discovery 관련 내용만 입니다.

• 약물을 성공적으로 만드는 것은 많은 요소를 고려해야 합니다.
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A Computer Scientist’s View 

• Drug discovery = exploring huge search space

• Single tools cannot solve this complex problem of dealing 
with daunting search space

• Compound space 

• Target gene space 

• Genetic space 

• Phenotype space

• Combination of all above

Exploring
Compound Space

(and also reaction space)
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• Sequence SMILES, SMARTS, SELFIES

CC(=O)OC1=CC=CC=C1C(=O)O

• Graph 2D/3D Graph structure

• Other Substructures or fingerprints, Image, etc.

Chemical Space

- Atom (Node) features
- Bond (Edge) features

Caffeine

1. SMILES (Simplified Molecular-Input Line Entry System) JCIM, 1988

a specification in the form of a line notation for describing the structure of chemical species using 

short ASCII strings

ex) CN1C=NC2=C1C(=O)N(C(=O)N2C)C

2. SMARTS (SMILES ARbitrary Target Specification) Daylight Chem Info Systems

a language for specifying substructural patterns in molecules

ex) [#6]-[#7]1:[#6]:[#7]:[#6]2:[#6]:1:[#6](=[#8]):[#7](:[#6](=[#8]):[#7]:2-[#6])-[#6]

3. SELFIES (SELF-referencIng Embedded Strings) NIPS, 2019

ex) [C][N][C][=N][C][=C][Ring1][Ring2][C][Branch1_3][epsilon][=O][N][Branch1_3][Branch2_2][C][Branch1_3][epsilon][=O][N][Ring1][Branch1_3][C][C]

Linear string representation:
Chemical Sequence-based Descriptors
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Two major issues with compound

• Search space
• A chemical space often referred to in cheminformatics is that of 

potential pharmacologically active molecules. Its size is estimated to be in 
the order of 1060 molecules.

• https://en.wikipedia.org/wiki/Chemical_space

• Synthesizability?
• Is it possible to synthesize a given compound?
• What is the best planning for synthesizing the compound?

• These two issues will be explored with two recent deep learning 
papers shortly.

Exploring
Target (gene) Space
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Proteins 
as Drug 
Targets

A comprehensive map of molecular drug targets, Nature Reviews Drug Discovery. 2017

Target Protein Space

• Sequence Amino Acid Sequence

MLARALLLCA VLALSHTANP…

Sequential graph (K-mer)

• Graph 3D structure, spatial graph

• Other Domain, Image, etc.
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Major issues

• Understanding protein sequence and family hierarchy
• GPCR proteins:

• Deep learning based alignment-free method for protein family modeling and 
prediction. Bioinformatics/ISMB. 2018

• Deep Hierarchical Embedding for Simultaneous Modeling of GPCR Proteins in 
a Unified Metric Space. In review

• Structure of proteins
• AlphaFold/AlphaFold2

• Improved protein structure prediction using potentials from deep learning. 
Nature 2020

Exploring
Genetic Space
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Major tasks and challenges

• Genome (DNA)-based drug efficacy and sensitivity prediction

• Synthetic lethality

• Targeted cancer therapy

• Transcriptome (gene expression) based drug effect prediction

• Multi-omics based drug study

• The number of dimensions is huge.
• 20,000 + tens of millions

Brief Bioinform, bbz144, 2019. https://doi.org/10.1093/bib/bbz144

• Deep learning of pharmacogenomics resources: moving towards precision oncology

Figure 1 Pharmacogenomics in cancer and overview of this review. 

(A) Cancer pharmacogenomics and DL. Cancer ...
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Brief Bioinform, bbz144, https://doi.org/10.1093/bib/bbz144

The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 4 DL models for predicting drug response and synergy. (A) 

Models for predicting drug sensitivity of a single ...

Databases (genome level)

• PharmGKB : pharmacogenomics resource sponsored by NIH

• Collects information on human genetic variation and drug responses.

• ‘Clinical evidence-centered’ Gene variant data

• Annotation data downloadable

• Contains non-CYP450 enzyme data

• PharmVar : catalogue on allelic variation of ADME genes
• Co-working with PharmGKB

• Contains more ‘sequence-centered’ variation data

• Sequence data downloadable
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Databases (multi-omics)

• Multi-omics data before drug treatment with drug 
response information (IC50 or AUC) :  

• GDSC, CCLE, NCI-60 

• Time-series gene expression data after drug 
treatment : 

• NCI TPW, NCI-DREAM

Exploring
Phenotype Space
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Phenotypes

• ADME

• Toxicity

images.google
images.google

Exploring
Compound Space

and 
Target Gene Space
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Concept of ‘space’ – search space

Li, Li, et al. "Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian 
additive regression trees." Scientific reports 9.1 (2019): 1-12.

Exploring
Compound Space

and 
Genetic Space
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DRIM: A web-based 
system for investigating 
drug response at the 
molecular level by 
condition-specific multi-
omics data integration, 
Frontiers in Genetics. In 
press

Examples for 
Exploring

Compound Space
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Two major issues with compound space

• Search space
• A chemical space often referred to in cheminformatics is that of 

potential pharmacologically active molecules. Its size is estimated to 
be in the order of 1060 molecules.

• https://en.wikipedia.org/wiki/Chemical_space

• Synthesizable?
• Is it possible to synthesize a given compound?

• What is the best planning for synthesizing the compound?

Dealing with How to Synthesize 
Compound Space

Planning chemical syntheses with deep 
neural networks and symbolic AI

Nature 2018
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Translation of the traditional chemists’ 
retrosynthetic route representation to the 
search tree representation.
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Architectures 
of the 
employed 
neural 
networks.

An exemplary 
six-step 
synthesis route 
for an 
intermediate in a 
drug candidate 
synthesis.
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Dealing with Big Compound Space (1)

Deep reinforcement learning for de novo 
drug design

Science Advances 25 Jul 2018
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Evolution of generated structures as 
chemical substructure reward increases.

(A) Reward proportional to the total number of small group 
substituents. 

(B) Reward proportional to the number of benzene rings.

Stack RNN generates diverse molecules

(A) Internal diversity of generated libraries. (B) Similarity of the generated libraries to the training 
data set from the ChEMBL database.
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RL generates 
valid molecules

Dealing with Big Compound Space (2) 

Junction Tree Variational Autoencoder for 
Molecular Graph Generation 

ICML 2018
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Main Idea to Reduce Search Space

Junction 
Tree 
Molecular 
Generation
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Tree Decoding

Decoding a 
Molecule 
from a 
Junction 
Tree
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Graph Decoder

Dealing with Big Compound Space (3) 

Inverse molecular design using machine 
learning: Generative models for matter 
engineering

Science 27 Jul 2018
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Closing the loop 
requires 
incorporating 
inverse design, 
smart software (93), 
AI/ML, embedded 
systems, and 
robotics (87) into an 
integrated 
ecosystem.

Example for 
Exploring

Target (gene) Space
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Deep Hierarchical Embedding for Simultaneous Model

ing of GPCR Proteins in a Unified Metric Space

Taeheon Lee, et al

in review

G-protein Coupled Receptors
- largest transmembrane protein family

- important drug targets 

- widely diverged protein family

- hierarchical class structure

Backgrounds

Stevens, Raymond C., et al. "The GPCR Network: a large-scale collaboration to determine human GPCR structure and function.

" Nature reviews Drug discovery 12.1 (2013): 25.

Previous Studies
Classifying / Modeling each hierarchical classes

Limits

Set of disconnected models for each subparts

No unified representation for GPCR sequences
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Our work
Introduction

Modeling hierarchical class structure in 

GPCR
- with a unified model

- into a single metric space

- using deep learning

Key contributions
- vector embedding

- metric distances between vectors

Neural Network Architecture
Methods

Data representation
One-hot encoding

Feature extractor with CNN
1-D motif discovery convolutional filter  

Various window lengths convolutional filter 

Local & significant sequence feature is learned

1-max pooling & concatenation
Existence of learned motifs in the sequence

[DeepBind]

[DeepFam]

Seo, Seokjun, et al. "DeepFam: deep learning based alignment-free method for protein family modeling and prediction." Bioinfo

rmatics 34.13 (2018): i254-i262.

APA

Alipanahi, Babak, et al. "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning." Nature bio

technology 33.8 (2015): 831.

[DeepBind]
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Neural Network Architecture
Methods

Embedding layer
Dimension reduction on features from CNN layer

Representation of the input sequence

Multiple branch classifier

s Unification of features from three hierarchical levels

Generation of shared features from three different levels

[MDNET]

Nam, Hyeonseob, and Bohyung Han. "Learning multi-domain convolutional neural networks for visual tracking." Proceedings of the I

EEE Conference on Computer Vision and Pattern Recognition. 2016.

Loss Function
Methods

Center loss[Center loss]

: representation of the sequence xi in the neural network

: center representation of the class that the sequence xi belongs to 

: class boundary margin (configured for each level)

: number of data points

Softmax loss (with cross entropy)

Compact representation in terms of distances

Separable representation of data in different classes 

Wen, Yandong, et al. "A discriminative feature learning approach for deep face recognition." European conference on computer vision. 

Springer, Cham, 2016.

d(xi)

μC(xi)

m

n

: number of data points

: number of classes

: class label of data i

n

K

yi

softmax

cross entropy
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Analysis on Embedding Vectors
Results

Cluster Analysis Phylogenetic Structure

Motif Analysis from Embeddin Vectors
Results

Motif analysis

motif discovery

dataset selection

Observations

Coarse-grained
- DRY, NSxxNPxxY : Family A

- LIGWG, GPVLASLL, CFLxEVQ : Family B

Fine-grained
- RKAAKTLG, FKQLHXPTM : Traceamine(A)

- SPMxCCLAxDML : Melanocortin(A)

Coarse-grained

Fine-grained
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Example for 
Exploring

Target (gene) Space

Improved protein structure 
prediction using potentials 

from deep learning
AlphaFold

Nature volume 577, pages706–710(2020)
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Success of Bioinformatics: contact prediction (2014)

David Baker, U of Washington, Seattle

Co-evolution in 1D seqContact in 3D str

Related works by many other authors since 1999

Slide from Chaok Seok @ SNU

Introduction: 
Determining Protein Structure
• Structure with low potential is stable!

• Protein structure prediction is to find a lowest potential 
structure with a given sequence.

• Quite a number of techniques are combined.

• Structure with low potential are searched with deep 
learning models for predicting torsion angles and 
distances.
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Simulated Annealing

• Randomly choose positions / lower the probability of moving 
at each step

The layers used in one 
block of the deep residual 
convolutional network 
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Training Set Preprocessing

• Extract MSA
• Uniclust30 dataset -> search with HHblits

• Position-specific substitution probabilities & covariation features

• Input features
• 1-hot amino acid type (21 features)

• Profile : PSI-BLAST, HHblits profiles, HMM profile

• Biases, deletion probability, residue index

• Covariation : Potts model parameters (484 + 1 (Frobenius norm))

Distance Prediction Model

• 220 layer ResNet
• 7 * 4(dilation 1, 2, 4, 8) : 256 channels

• 48 * 4(dilation 1, 2, 4, 8) : 128 channels

• Target : distance between the Cβ atoms of the residues; divided the 
range 2–22 Å into 64 equal bins

• Auxiliary loss : secondary structure 0.005; accessible surface area : 
0.001

-32-



Distogram Prediction(1)

• Divided L x L distance matrix into non-overlapping 64 x 64 
crops

• Outcome for each 1x1 bin is probability distribution

• Data Augmentation
• Randomize the offset of the crops (many thousands of different 

training samples from single protein)

• Add noise proportional to the ground truth resolution to the atom 
coordinates

Distogram Prediction(2)

• To predict each L x L residue pairs, many 64 x 64 crops are 
combines

• Several tilings are produced and averaged together
• 64 x 64 different possible tilings

• heavier weighting for the predictions near the center of the crop 

• Four separate models with slightly different hyperparameters are 
averaged together 

• Mode of combined distogram is used as prediction (figure on 
next page)
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Tortion Prediction

• Predicts marginal Ramachandran distribution for each residue
• Probability distribution is divided into 10° x 10° bins (36 x 36 bins)

Ramachandran Plot

Building differentiable potential

• Discrete distance distribution 
• Interpolated with a cubic spline

•

• Tortion distributions
• Each marginal predictions are fitted with a unimodal von Mises 

Distribution

• Rosetta’s Vscore2_smooth 

• Van der Waals term to prevent steric clashes
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Structure realization

• We can now compute Differentiable Potential given torsion 
angle initialization!

•

• Minimize Vtotal using gradient descent
• L-BFGS, a variation of quasi-newton method, is used

Newton method

Initialization
φ, ψ

Structure
pool

AlphaFold2 @ CASP14, 2020
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Slide from Chaok Seok @ SNU

AlphaFold2: Deep learning의 끝판왕 (2020)

John Jumper 
(Mentioned physics & geometry in his talk)

Slide from Chaok Seok @ SNU
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John Jumper: Data가 충분하지 않으므로 학습을 잘 할 수 있는 network 이 필요하다

Slide from Chaok Seok @ SNU

John Jumper: Physical insights are built into the network

Slide from Chaok Seok @ SNU
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Slide from Chaok Seok @ SNU

Slide from Chaok Seok @ SNU
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Example for 
Exploring

Phenotype Space (Toxicity) 

TOP: A deep mixture representation 
learning method for boosting molecular 
toxicity prediction 

Methods. 2020
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면역 과민 반응

특이 반응생체 활성화

On-target 독성 Off-target 독성

Nuclear receptor signaling Stress response elements

AR, AhR, ER, Aromatase, PPAR-γ ARE, ATAD5, HSE, MMP, p53
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Database 특징 # of compounds

ToxCast 다양한 세포주, 생물학적 활성 등을 고려해 약
700 종류의 in vitro assay를 high-throughput 
screening으로 측정한 데이터 베이스

약 8500개

Tox21 12개의 주요 세포 독성 타겟에 대한 화학물질의
반응을 Luciferase assay 등을 통해 정성적으로
측정한 데이터 베이스

약 8000개

DSSTOX 화학물질의 물리화학적 특징과 Tox21, ToxCast의
생물학적 실험 데이터를 연동해 제공하는 데이터
베이스

약 740,000개

ClinTox FDA에 승인된 약물과 독성 문제로 임상 시험에
실패한 약물 비교

약 1500개

SIDER 시판 중인 약물의 부작용에 대한 통합 정보 데이
터 보유. 약물 부작용이 보고된 논문 및 실험 데
이터를 빈도와 심각도에 따라 분류해 제공

약 1500개

ECOTOX 13,000여 종의 생물에 대한 화학물질의 독성 실
험 데이터를 통합해 제공. 독성은 EC50, IC50, 
NOEL 등을 기준으로 평가하고 관련 논문 링크
수록.

약 12,000개

독성에 관련된 공공 데이터베이스 리스트.
데이터베이스마다 독성에 대한 기준과 사용한 기법이 다름
연구 목적에 맞게 적절한 데이터 베이스 활용 예정.

ToxCast: Chemical Research in Toxicology 2011 24 (8), 1251-1262
Tox21: National Research Council. 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy.
DSSTOX: Computational Toxicology, 12 (2019), p. 100096
ClinTox: PLOS ONE, 2013, 8
SIDER:Nucleic Acids Research, 2016, Vol. 44, Database issue D1075–D1079
ECOTOX: Environmental toxicology and chemistry 30.8 (2011)

Problem to be solved here for Toxicity

• Any compounds that target very important genes are toxic.

• Example) 12 proteins in Tox21 database
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Top 
Architecture

Segmentation
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GA-based 
physiochemical 
feature selection
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An ablation study on ToxB

Model AUC

TOP with full components 0.912 ± 0.005

Without samples augmentation 0.908 ± 0.003

Without physiochemical properties learning 0.717 ± 0.012

Without BiGRU-based SMILES string learning 0.632 ± 0.001

Replacing BiGRU with GRU 0.899 ± 0.007

Replacing BiGRU with BiRNN 0.903 ± 0.006

.

Example for 
Exploring

Phenotype Space (Drug Metabolosm)

Slide made by Dongmin Bang
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Backgroud: ADME

• ADME : Disposition of a drug within an organism

Absorption

흡수
Distribution

분포
Metabolism

대사
Excretion

배설

DTI
Efficacy
Toxicity

DTI
Efficacy
Toxicity

• Metabolism : transformation of xenobiotics into excretable form

• Cytochrome P450 : “The most important enzyme” in metabolism

• Mostly expressed in the liver and small intestine

• Superfamily of at least 57 isoforms 

• Activity of CYP450 directly effects the drug efficacy/toxicity

• Expression pattern

• Inhibition level – Drug-drug interaction

• Genetic polymorphism

Background: metabolism & CYP450
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• CYP450 and genetic polymorphism

• Contains Highly polymorphic genes

• Activity Score(AS) system : translates genotype to phenotype

• Classifies phenotypes into “Decreased/Normal/Increased function”

• Adopted by CPIC(Clinical Pharmacogenetics Implementation Consortium) 

• “Guidelines for CYP3A5 Genotype and Tacrolimus Dosing”

http://www.cypalleles.ki.se/

Background: metabolism & CYP450

introduction : metabolism & CYP450

• CYP450 and genetic polymorphism

• Increased function : gene duplication

• Decreased function : gene deletion, frameshift mutation, CNV

• Example : CYP2D6 – metabolizes 25-30% of drugs

• Wild-type : CYP2D6*1 → Normal function

• 46% of Asian population : CYP2D6*10 → Decreased function

• 5% of Western population : CYP2D6* x N → Increased function

• “Ultrarapid metabolizer, UM”

http://www.cypalleles.ki.se/
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Metabolism Prediction by Transfer Learning

• bioRxiv, Feb 2020

• Dept. of Biomedical Data Science, S

tanford Univ

• Dept of Biomedical Science, Univ of 

Montana

• Prediction of CYP2D6 function from 

DNA sequence with transfer learning

Metabolism prediction via deep learning

• Prediction of CYP2D6 function from DNA sequence

• Input : One-hot encoded DNA sequence(4) + annotation data(8)

• Total 7417 x 12 matrix

• Output : muti-class classification into [ normal / decreased / no function ]
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Metabolism prediction via deep learning

• Transfer learning improves prediction accuracy (40% →  88%)

• Too small dataset : Only 56 sequence w/ curated functions 

• Applied transfer learning on 3-layer CNN

56 seq with known function
Transfer learning

Slide made by Dongmin Bang

5만개의 simulated CYP2D6 diploid 조합
from 'gnomAD' database

314개의 실제 liver microsome sample data
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Sumamry:
Metabolism prediction via deep learning

• Transfer learning improves prediction accuracy (40% →  88%)

• Step 1 : predicting activity score of 50,000 simulated sequences

• Created by introducing SNVs and INDELs on sites with low importance

• Step 2 : regression model of predicting functional activity data from actual liver micros

ome samples

• Sequenced liver microsome data with measured metabolic activity

• Weights from pretrained network are copied and used as starting weight

Survey: methods for prediction of metabolism

• Chem Biol Drug Des. 2019 Apr 

• Wellcome Genome Campus, Cambridge, 

UK

• 3 categories of prediction tools :

• Prediction of substrates/inhibitors of CYP

• Site of Metabolism(SoM) prediction

• Metabolite structure prediction
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Survey: methods for prediction of metabolism

• 1) Prediction of substrates/inhibitors of CYP

• Understanding the specificity of individual CYP isoforms

• Assists prediction of Drug-Drug Interactions(DDI)

Olubadewa A. Fatunde et al, The Role of CYP450 Drug Meta
bolism in Precision Cardio-Oncology, Int. J. Mol. Sci. 2020 Fe
b

Survey: methods for prediction of metabolism

• 1) Prediction of substrates/inhibitors of CYP

• Docking methods – 3D modeling of substrate binding

• Machine learning methods based on enzyme-substate/inhibitor interaction data

• SwissADME(Daina et al. 2017) : web-based SVM model for prediction of CYP inhibitors

Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evalu
ate pharmacokinetics, drug-likeness and medicinal chemistry friendliness 
of small molecules. Sci Rep. 2017 Mar
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Survey: methods for prediction of metabolism

• 2) Site of Metabolism(SoM) prediction

• 2-step model : Reactivity prediction & Accessibility prediction

“Results for in silico SoM prediction for MW005”

Martyna Z Wróbel et al. Synthesis and biological evaluation of new multi-ta
rget 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antide
pressant effect, Eur J Med Chem. Dec 2019

Survey: methods for prediction of metabolism

• 3) Metabolite structure prediction

• MetaTox(Rudik et al., 2017) : Prediction of metabolite and estimates its toxicity

• Meteor Nexus(Marchant et al., 2008) : SoM & metabolite prediction via k-nearest neig

hbor approach

Rudik et al., MetaTox: Web Application for Predicting Struct
ure and Toxicity of Xenobiotics' Metabolites, J Chem Inf Mo
del. 2017 Apr

Prediction in the Metatox of Bergenin and its metabolites and their respective chemical reactions.
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Examples for 
Exploring

Genetic (genome) Space

The druggable genome and support for 
target identification and validation in 
drug development

• Science Translational Medicine 29 Mar 2017
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• Abstract

• Target identification (determining the correct drug targets for 
a disease) and target validation (demonstrating an effect of 
target perturbation on disease biomarkers and disease end 
points) are important steps in drug development. Clinically 
relevant associations of variants in genes encoding drug 
targets model the effect of modifying the same targets 
pharmacologically. To delineate drug development (including 
repurposing) opportunities arising from this paradigm, we 
connected complex disease- and biomarker-associated loci 
from genome-wide association studies to an updated set of 
genes encoding druggable human proteins, to agents with 
bioactivity against these targets, and, where there were 
licensed drugs, to clinical indications. We used this set of 
genes to inform the design of a new genotyping array, which 
will enable association studies of druggable genes for drug 
target selection and validation in human disease.

Potential repurposing 
opportunities from 
the discordant GWAS 
phenotype/drug 
indication matches

This connection is 
determined by a drug 
target gene occurring 
within 50 kbp of a 
GWAS association

-53-



Biologically Informed Neural 
Networks Predict Drug 

Responses

Example for
Exploring

Compound Space
and 

Target Gene Space
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Concept of ‘space’ – search space

Li, Li, et al. "Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian 
additive regression trees." Scientific reports 9.1 (2019): 1-12.

Deep learning enables rapid 
identification of potent DDR1 kinase 

inhibitors

Nature Biotechnology 2019

111
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Introduction

• To design DDR1 kinase inhibitor, used are

• VAE with strong prior from tensor decomposition 
• RL with three SOMs (self organizing maps)

Brief Summary

113
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Database

114

• 1. Zinc Clean Leads collection(1,936,962 molecules)
• molecular weight in the range from 250 to 350 Daltons, a number of rotatable bonds not greater than 7, and XlogP less 

than or equal to 3.5. We removed molecules containing charged atoms or atoms besides C, N, S, O, F, Cl, Br, H or cycles 
longer than 8 atoms. The molecules were filtered via medicinal chemistry filters (MCFs) and PAINS 
filters.(https://github.com/molecularsets/moses)

• 2. Known DDR1 Kinase Inhibitors

• 3. Common Kinase Inhibitors (positive)

• 4. Molecules that act on Non-Kinase Targets (negative)
• 2~4: from ChemBL dataset

• 5. Patent Data for claimed molecules
• www.globaldata.com 2017년까지 특허 등록된 약물17,000종

• 6. 3D Structure of DDR1 Inhibitors

Model Architecture

115

Latent space prior is learned by tensor train decomposition,
representing relationship between chemical properties and latent vector z. 
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Reinforcement Learning

116

Reward function

1.general kinase SOM, 𝑹𝒈𝒆𝒏𝒆𝒓𝒂𝒍) 

predict the activity of compounds 
against kinases 

2.specific kinase SOM, 𝑹𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄) 

select compounds located in neurons 
associated with DDR1 inhibitors within 
the whole kinase map

3.trending SOM, 𝑹𝒕𝒓𝒆𝒏𝒅𝒊𝒏𝒈) 

assess the novelty of chemical structures.

For reducing the variance of the gradient
→using ‘baseline’ technique. 
The rewards for each molecule in a batch 
are calculated and averaged, and the 
average reward is then subtracted from 
each individual reward:

Experiments

• Docking simulation
in the Maestro suite (https://www.schrodinger.com). PDB structure 3ZOS was 
preprocessed and energy minimized using the Prep module

• In vitro activity assays
The activity of the molecules against human DDR1 and human DDR2 kinases was 
assessed using KinaseProfiler (Eurofins Scientific).

• Cell-culture activity assay
To measure autophosphorylation, the gene encoding human DDR1b with a 
hemagglutinin tag was cloned into pCMV Tet-On vector (Clontech), and stable 
inducible cell lines established in U2OS were used for the IC50 test. DDR1 expression 
was induced for 48h before DDR1 activation by rat tail collagen I (Sigma 
11179179001). The cells were detached with trypsinization and transferred to a 15 ml 
tube. Then after pretreatment with the compound for 0.5h, the cells were treated 
with compounds in the presence of 10μg ml−1 rat tail collagen I for 1.5h at 37 °C.

117
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Experiments

• Cell-culture fibrosis assay
MRC-5 or human hepatic LX-2 cells were grown in reduced serum medium and 
treated with compounds for 30minutes. Subsequently, the cells were stimulated with 
10ng ml–1 or 4ng ml–1 TGF-β (R&D Systems, 240- B-002) for 48 or 72h. The cells 
were lysed in radioimmunoprecipitation assay buffer and cell lysate of each sample 
was loaded onto a Wes automated western blot system (ProteinSimple, a Bio-Techne 
brand).

• Cytochrome inhibition

• Microsomal stability

• Pharmacokinetic studies

• Statistics and reproducibility

118

Example for
Exploring

Compound Space
and 

Target Gene Space

(3 different approaches are reviewed)
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DeepConv-DTI
Prediction of drug-target interactions via 

deep learning with convolution on 
protein sequences

Ingoo Lee ,Jongsoo Keum ,Hojung Nam
PLoS Computational Biology, 2019

• Framework:
• CNN: 

• protein encoding 

• capture local residue patterns

• globally max pooling

• FC layer

• drug encoding

• Input:
• Protein: sequence

• Drug: Morgan(Circular) fingerprints

• Output:
• Interaction probability

• Hyper parameters:
• Protein input: 2500

• Drug input: 2048

• protein layer size: 128

• drug layer size: 128

• CNN window size: 5,10,15,20,25

DeepConvDTI
Prediction of drug-target interaction via deep learning with convolution on protein sequences
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Data for DeepConvDTI

Source: DrugBank, KEGG, IUPHAR, MATADOR, PubChem, CHEMBL

# of DTIs # of compounds # of proteins

Training

Union DrugBank, KEGG, IUPHAR 
32,568 positive
65,136 negative 11,950 3,657

Validation
MATADOR: 370 positive
Liu et al. : 507 negative 499 538

Test

PubChem Bioassays:
18,228 positive + 18,228 negative
CHEMBL KinaseSARfari:
3,835 positive + 5,520 negative

PubChem: 21,907
KinaseSARfari: 3,379

PubChem: 698
KinaseSARfari: 389

Data:

DeepConvDTI

Source: DrugBank, KEGG, IUPHAR, MATADOR, PubChem, CHEMBL

# of DTIs # of compound
s

# of proteins

Training

Union DrugBank, KEGG, IUPH
AR 
32,568 positive
65,136 negative

11,950 3,657

Validation
MATADOR: 370 positive
Liu et al. : 507 negative

499 538

Test

PubChem Bioassays:
18,228 positive + 18,228 negati
ve
CHEMBL KinaseSARfari:
3,835 positive + 5,520 negative

PubChem: 21,907
KinaseSARfari: 3,379

PubChem: 698
KinaseSARfari: 389

Direct and indirect interactions between protein and chemical
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Data:

DeepConvDTI

Source: DrugBank, KEGG, IUPHAR, MATADOR, PubChem, CHEMBL

# of DTIs # of compound
s

# of proteins

Training

Union DrugBank, KEGG, IUPH
AR 
32,568 positive
65,136 negative

11,950 3,657

Validation
MATADOR: 370 positive
Liu et al. : 507 negative

499 538

Test

PubChem Bioassays:
18,228 positive + 18,228 negati
ve
CHEMBL KinaseSARfari:
3,835 positive + 5,520 negative

PubChem: 21,907
KinaseSARfari: 3,379

PubChem: 698
KinaseSARfari: 389

Highly negative credible samples

Data:

• Protein classes distribution

DeepConvDTI
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DeepConvDTI

Protein module

Drug module

Binary classification

Performance:

• Comparison with other models

• Multi-scale Features Deep Representation (MFDR) (based on SAE)

• DeepDTI (based on DBN) 

• DeepDTA (based on CNN)

• 18,228 positive + 18,228 negative; 21,907 compounds, 698 proteins

DeepConvDTI
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Compound–protein interaction prediction 
with end-to-end learning of neural 
networks for graphs and sequences

Masashi Tsubaki, Kentaro Tomii, Jun Sese
Bioinformatics, 2018

Data

Tsubaki et al.

Source: Liu et al. (from DrugBank, MATADOR), DUD-E

# of DTIs
# of compoun
ds

# of protei
ns

Training

Human: 3,369 positive
C.elegans: 4,000 positive
positive : negative = 1:1, 1:3,
1:5

DUD-E: DTIs for 102 targets

For Human, C.elegans:
80% of the dataset

For DUD-E:
DTIs for 72 targets 
(22,886 active + 22886 
decoy)

Human: 1,052
C.elegans: 1,434

Human: 852
C.elegans: 
2,504Validation

10% of the dataset

Test

For Human, C.elegans:
10% of the dataset

For DUD-E:
DTIs for 30 targets
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Data

Tsubaki et al.

Source: Liu et al. (from DrugBank, MATADOR), DUD-E

# of DTIs
# of compoun
ds

# of protei
ns

Training

Human: 3,369 positive
C.elegans: 4,000 positive
positive : negative = 1:1, 1:3,
1:5

DUD-E: DTIs for 102 targets

For Human, C.elegans:
80% of the dataset

For DUD-E:
DTIs for 72 targets 
(22,886 active + 22886 
decoy)

Human: 1,052
C.elegans: 1,434

Human: 852
C.elegans: 
2,504

Validatio
n

10% of the dataset

Test

For Human, C.elegans:
10% of the dataset

For DUD-E:
DTIs for 30 targets

Data

Tsubaki et al.

Source: Liu et al. (from DrugBank, MATADOR), DUD-E

# of DTIs
# of compoun
ds

# of protei
ns

Training

Human: 3,369 positive
C.elegans: 4,000 positive
positive : negative = 1:1, 1:3,
1:5

DUD-E: DTIs for 102 targets

For Human, C.elegans:
80% of the dataset

For DUD-E:
DTIs for 72 targets 
(22,886 active + 22886 
decoy)

Human: 1,052
C.elegans: 1,434

Human: 852
C.elegans: 
2,504

Validatio
n

10% of the dataset

Test

For Human, C.elegans:
10% of the dataset

For DUD-E:
DTIs for 30 targets
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• Framework:
• GNN

• Encode compound graph

• CNN

• Encode protein sequence

• Attention mechanism

• Capture interaction site

• Input:
• Protein: sequence

• Compound: G = (V, E)

• Output:
• GNN

subgraph vector representation

• CNN

residue vector representation

• Interaction probability

Tsubaki et al.
Compound–protein interaction prediction with end-to-end learning of neural ne
tworks for graphs and sequences

GNN CNN

Attention

For molecule embedding
1) Consider the use of r-radius subgraph

2) For each subgraph: update the vertex 
and edge vectors

3) Represent subgraph with summation of 
the hidden vectors of each vertices

4) Represent molecule with summation of 
the hidden vectors of each subgraphs 

Tsubaki et al.
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Tsubaki et al.
For protein embedding

1) Consider each 3-gram amino acids as a w
ord

2) Apply CNN on each 3-gram amino acids:

For capturing interaction sites (attention 
mechanism)

1) Compute the dot product values as weights:

For molecular vector: 

For residue vector:

Calculation of weight:

2) Calculate weighted protein vector:

Tsubaki et al.
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Performance:

Tsubaki et al.

DUD-E

Explanation of attention module:

• visualization of CPIs with attention weights.
• Green: drug compounds

• Red: high weighted residue

• The neural attention mechanism can indicate 
important regions in a protein for interactions 
between a drug compound and a protein by 
highlighting high-value attention weights.

Tsubaki et al.
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Graph Convolutional Neural Networks 
for Predicting Drug-Target Interactions

Wen Torng and Russ B. Altman
Department of Bioengineering, Stanford University, Stanford, California 94305, United States

Department of Genetics, Stanford University, Stanford, California 94305, United States

Yijingxiu Lu

Beforehand
• Protein pocket:

• An important, ambiguous feature of protein surface that determine

what interactions are possible with ligands and other macromolecules.
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Summary
• Task: 

• Learn fixed-size representations of protein pockets

• predict protein-ligand interactions

• Framework:
• Graph Auto-encoder(AE): Trained on a representative druggable pocket set to lear

n general pocket features

• Graph-CNN: Trained to extract features from the pocket graphs and 2D ligand gra
phs

• Datasets:
• For training AE: 965 pockets ( Druggable pocket sets + DUD-E (Database of Useful 

Decoys-Enhanced))

• For training Graph-CNN: DUD-E data set

• For validating Graph-CNN: 
• 4-fold validation model: DUD-E data set

• Full data set model: maximum unbiased validation (MUV) data set

Framework
• Left: Step I - Graph Auto-enco

der to generate general pocke
t features

• Right: Step II - Graph CNN to 
predict binding label of a pair 
of drug-target 

• In the Graph-CNN framework, 
Pocket GCN and Molecule G
CN are constructed to extract 
features from pocket graph a
nd molecule graph separately.

• Pocket GCN is initialized with 
learnt weights from Step I
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DUD-E

http://dude.docking.org/

• Contains 22,886 active compounds and  their affinities against 102 targets
• An enhanced and rebuilt version of DUD

• DUD: Directory of Useful Decoys
• Decoy: a compound that has similar physical properties but dissimilar topology with an active 

compound against a target
• On average, each target has 224 actives (positive examples) and over 10,000 decoys (negative exa

mples)

Maximum Unbiased Validation (MUV) data set

• Benchmark data sets that designed using “refined nearest neigh
bor” analysis for virtual screening based on PubChem bioactivity 
data

• Contains  a collection of datasets of actives and corresponding 
decoy datasets

• Unbiased with regard to both analogue bias and artificial enrich
ment

• 17 active classes, 93,087 molecules
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Input Featurization & Preprocessing
• Protein pockets:

• Represent each protein pocket as a graph of key residues
• For each PDB co-crystal structure, identify the pocket residues by retrie

ving residues that have any atom within 6 Å of the bound ligand
• Node -> pocket residue
• Node attribute -> local amino acid microenvironment that described as fix

ed-size vectors generated using FEATURE program
• Edge -> Distance between nodes

• Small molecules:
• RDKit package

• Node -> atom
• Edge -> bond

Step I: Auto-encoder
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Step II: Graph-CNN
• Comprises 

• (1) Molecule graph convolution module

• 2 GCN layers with 200, 100 filters

• Learn molecular fingerprints of length 216

• (2) Pocket graph convolution module 

• 2 GCN layers with 200, 100 filters

• Learn pocket fingerprints of length 512

• Has the same architecture of the “Encoder I” 
and “Encoder II” in Step I

• (3) Interaction module

• (4) Softmax classifier

• Adapting the “graph convolution operations” pr
oposed by Duvenaud et al. to generalize the Gr
aph-CNN framework onto graphs, and learn fix
ed-size molecular fingerprints

Evaluation & Results

• 2D, 3D t-SNE visualization of fixed-size     
pocket fingerprints learned by Graph-AE
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Example for 
Exploring

Compound Space
and 

Genetic Space

De novo generation of hit-like molecules 
from gene expression signatures using 

artificial intelligence

Oscar Méndez-Lucio1,2*, Benoit Baillif 1 , Djork-Arné Clevert3, David Rouquié1,5* & Joerg Wichard4,5* 

1 Bayer SAS, Bayer Crop Science, 355 rue Dostoïevski, CS 90153, 06906 Valbonne, Sophia Antipolis Cedex, France. 

2 Bloomoon, 13 Avenue Albert Einstein, 69100 Villeurbanne, France. 

3 Department of Machine Learning Research, Bayer AG, 13353 Berlin, Germany. 

4 Department of Genetic Toxicology, Bayer AG, 13353 Berlin, Germany. 

5 These authors jointly supervised this work: David Rouquié, Joerg Wichard. 
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Introduction

• Connecting chemistry and biology through gene expression 
without the need of previous activity labels.

• Conditioning a GAN with transcriptomic data

Model
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Datasets

• L1000 from GEO

• LINCS: phase 1 (GSE92742), phase 2 (GSE70138)

• Landmark genes coming from perturbagens tested at 5 or 10 
µM either on MCF7 or VCAP cell lines after 24 h of exposure.

• 19,768 compounds and 31,821 gene expression signatures.

Experiments 3

Conditioned GAN focus on specific areas of the chemical space.
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Result

Result
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Example for 
Exploring

Compound Space
and 

Genetic Space

DRIM: A web-based system for investigating 
drug response at the molecular level by 

condition-specific multi-omics data integration

Minsik Oh, Sungjoon Park, Sangseon Lee, Dohoon
Lee, Sangsoo Lim, Dabin Jeong, Kyuri Jo, Inuk Jung, 

and Sun Kim

Frontiers in Genetics, 2020

Bio & Health Informatics Lab
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Introduction

• Pharmacogenomics is the study of how genes affect a person’s 
response to drugs.

• The variability in drug responses among cells is a major challenge in 
cancer drug therapy, thus personalized drug response research is much 
needed. 

• With the recent advances in instrument technologies, drug response 
analysis at the molecular level has become possible.

• Multi-omics data before drug treatment with drug response (IC50 or 
AUC) :  GDSC [1], CCLE  [2], NCI-60 [3]

• Time-series gene expression data after drug treatment : NCI TPW [4], 
NCI-DREAM [5]

• We have an opportunity to investigate relationship between drug 
response phenotypes and corresponding molecular data.

Bio & Health Informatics Lab 159

Introduction

Drug response at the molecular level

need to be done by

• Pathway-level analysis

▪ Drug responses can be better explained at the biological pathway level, 
rather than at the gene level.

• Multi-omics level analysis

▪ Integrative analysis of multi-omics data can help understand cell line-
specific gene regulation mechanisms for pathway activation and it can be 
used as a signature for drug response sub-pathway identification

Bio & Health Informatics Lab 160
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Bio & Health Informatics Lab 161

DRIM 
workflow

Bio & Health Informatics Lab 162

Multi-omics embedding

• DRIM integrates four multi-

omics data before drug 

treatment as gene-centric 

vector from CCLE database.

• IC50 related features selection 

with Lasso regression

• Gene selection related to 

associated features.

– Using (Gene x Features) 

matrix

– Activation and propagation 

from selected features to 

the omics data later in the 

decoder.
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Bio & Health Informatics Lab 163

Multi-omics data analysis result on the web
• DRIM provides multi-omics 

data analysis tables (Figure A)

• Cell line IC50 value

• Multi-omics potential 
mediator genes

• Perturbed pathway list 
with P-value

• KEGG-pathway plot for 
perturbed pathway (Figure B)

• Multi-omics potential 
mediator pathway enrichment 
plot (Figure C)

Bio & Health Informatics Lab 164

Time-series gene expression data analysis result

Perturbed sub-pathway of each cell line. 
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(A) (B)

(C)

Bio & Health Informatics Lab 165

Personalized perturbed sub-pathway analysis

Drug Discovery and Cells
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NATURE REVIEWS | DRUG DISCOVERY 
VOLUME 18 | JANUARY 2019 

CONNECTIVITY MAP (CMAP)
HTTPS://WWW.BROADINSTITUTE.ORG/CONNECTIVITY-MAP-CMAP

• To date, CMap has generated a library containing over 1.5M 
gene expression profiles from ~5,000 small-molecule 
compounds, and ~3,000 genetic reagents, tested in multiple 
cell types. To produce data of that scale, we’ve developed 
L1000, a relatively inexpensive and rapid high-throughput gene 
expression profiling technology. Expression data are processed 
through a computational pipeline that converts raw 
fluorescence intensity into signatures, which can be used to 
query the CMap database for perturbations that give a related 
gene expression response.

• Funding for our work comes from the NIH LINCS (Library of 
Integrated Cellular Signatures) project
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The LINCS Consortium

• By generating and making public data that indicates 
how cells respond to various genetic and 
environmental stressors, the LINCS project will help us 
gain a more detailed understanding of cell pathways 
and aid efforts to develop therapies that might 
restore perturbed pathways and networks to their 
normal states. The LINCS website is a source of 
information for the research community and general 
public about the LINCS project. This website along 
with the LINCS Data Portal contains details about the 
assays, cell types, and perturbagens that are currently 
part of the library, as well as links to participating sites, 
data releases from the sites, and software that can be 
used for analyzing the data.
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Drug–disease similarity approach to 
identify topiramate in IBD 

• Dudley and colleagues compared the gene expression signature 
of inflammatory bowel disease (IBD) derived from publicly 
available data obtained from the National Center for 
Biotechnology Information (NCBI) Gene Expression Omnibus 
with the gene expression profile of 164 drugs obtained from the 
Connectivity Map (cMap). 

• Therapeutic predictions for drug–disease pairs were derived 
based on the extent of negative correlation between the gene 
expression signature of the drug and that of the disease. 
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Drug–drug similarity approach to identify the potential use of 
fasudil in amyotrophic lateral sclerosis 

• Iorio and colleagues used the ‘guilt by association’ principle to 
construct a drug network using publicly available transcriptomic 
profiles of drugs, which allowed them to identify drugs with a similar 
transcriptional signature and therefore a perceived similar mechanism 
of action. 

• Using gene expression profiles of each drug across multiple 
treatments on different cell lines and/or at different dosages obtained 
from the Connectivity Map (cMap), they computed a representative 
transcriptional response for each drug. 

• A drug network was then constructed in which two drugs were 
connected to each other if their optimal transcriptional responses 
were similar according to a similarity measure developed by the 
authors (called drug distance). 

Use of GWAS-identified targets for potential 
repurposing of denosumab in Crohn’s disease 

• This prompted Sanseau and colleagues to speculate about a 
potential role for denosumab in Crohn’s disease. 

• Using human B-lymphoblastoid cells and osteoblasts, they 
found that the Crohn’s disease-associated TNFSF11 variant was 
associated with the differential expression of TNFSF11 and was 
able to explain population variation in TNFSF11 expression in 
both cell types representing distinct cellular lineages relevant for 
both inflammatory and bone disease. 

-86-



The challenges of big data 

• Advances in technology such as next-generation sequencing and 
continuously reducing costs mean that researchers can generate 
large quantities of experimental data; these include data 
generated by high-throughput DNA and RNA sequencing, mass 
spectrometry, metabolomics and transcriptomic data, 
phenotyping and many more. Added to this are large amounts 
of clinical data that are increasingly becoming available from 
electronic health records (EHRs), clinical trials and biobanks. 
Such data are often referred to as big data — data sets that are 
so large or complex that  traditional data processing methods 
are inadequate 

Biologically Informed Neural 
Networks Predict Drug 

Responses
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Visible Layers (with Gene Ontology)
Genomics of Drug Sensitivity in Cancer database (GDSC)
Cancer Therapeutics Response Portal v2 (CTRP)
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Defining a Hierarchy of Genes and Cellular Subsystems 

• we selected the top 15% most frequently mutated genes in human 
cancers accord- ing to the Cancer Cell Line Encyclopedia (CCLE) 
among genes annotated to Gene Ontology (GO) terms.

• This procedure yielded 3,008 genes, henceforth called ‘DrugCell
genes’, which were used in model construction. These genes were 
organized into a hierarchy of nested gene sets, representing cellular 
subsystems at different scales, based on terms extracted from the GO 
Biological Process hierarchy. 

• To further reduce model complexity, we restricted the hierarchy to a 
maximal depth of five subsystems by removing all subsystems more 
than five parent-child relations above the bottom layer subsystems of 
the hierarchy (subsystems without any children). 

• The resulting hierarchy, composed of 2,086 subsystems, defined the 
branch of DrugCell for embedding of genotype (left branch in Figure 
1A, also called the VNN; Figure 1B). 

Characterization 
of Cancer Cell 
States Learned 
by DrugCell
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Systematic Validation of Identified 
Mechanisms of Sensitivity Using CRISPR/Cas9

Literature Mining
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Abstract
disease-gene-chemical triplet relationship from Medline abstracts

• There are few studies that extract disease-gene-chemical relation
ships from biomedical literature at a PubMed scale

• Authors proposed a DL model based on Bi-LSTM to identify the 
evidence sentences of relationships from Medline abstracts

• Developed a search engine called DigChem

• http://gcancer.org/digchem -> but not available right now..
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Keywords
• Disease-Gene-Chemical Triplet Relationship from literature

• Horizontal(parallel) alignment of sentences

• Bidirectional LSTM

disease chemical

gene

alignment

Materials & Methods

Gold standard evidence sentences

• Authors assumed two sentences together represent a triplet relationship

• if (three elements appear in the same sentence):

• duplicate the sentence into two identical sentences

• if (a sentence has multiple mentions of gene and of chemical):

• each pair is extracted to form either positive or negative triplet with di
sease mention

• Authors randomly selected sentence pairs from Medline abstracts, and ma
nually evaluated them as positive or negative(1,000 pairs each)

• Among 2,000 pairs, half of them were from the same sentence

Gene-Chemical sentence Disease sentence
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Materials & Methods
Positive / Negative relationship

Positive
relationship

Negative
relationship

Name of chemical, 
gene, and disease

exist exist

Relationship direct or indirect none

Materials & Methods
Positive / Negative sentence pair example(from article)
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Materials & Methods
Relation classification model

Materials & Methods
Word embedding

• Used two embedding features

• Word representation vectors

• applied Word2Vec to Medline data set

• vector size: 200

• Entity type representation vectors

• used NER tools and tagged with BIO format

• 7 tags in total(B and I for gene, chemical and disease each, and one O)

• vector size: 20
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Materials & Methods
Post processing

• Before post-processing, the false positive rates were 35.8%

• Authors constructed five rules to filter out false positive sentences

1. filter out when recognized mentions are not contained in synonyms 
of entities in dictionaries after the recognized mentions are normali
zed into entity names

2. filter out if any mention is recognized as more than one entity type

3. filter out if it contains hyponyms of ‘study’ (it may express a purpos
e of research)

4. filter out if gene name and chemical nmae are connected by a conj
unction in the dependency parse tree

Statistics of DigChem
Results & Discussion
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Comparison results with CTD & DrugBank
Results & Discussion

BioBERT and Its Applications

Slides By Prof. Jaewoo Kang @ Korea University
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BioBERT: a pre-trained biomedical language 
representation model for biomedical text mining
w/ Jinhyuk Lee†, Wonjin Yoon†, Sungdong Kim, 
Donghyeon Kim, Sunkyu Kim, Chan Ho So

[Bioinformatics 2020]

Overview of BioBERT
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Pre-training of BioBERT

– Pre-trained Bidirectional Transformer on PubMed + PMC (18B words) on top of 
BERT (3.3B words) for more than 20 days with 8 V100 (32GB) GPUs.

– Keeps the same architecture throughout the tasks except the last softmax layer
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Named Entity Recognition
• (Bio)BERT for sequence tagging task: 

• Utilized the last layer of LM(BioBERT) as a contextualized representation

• Representations are fed into the output layer (1 layer feed-forward neural network)

199

Relation Extraction
• Relation extraction in the biomedical domain is a task of classifying relations of named 

entities in a biomedical corpus. 

• Binary or multi-class classification task on a sentence using [CLS] token. 

• Example: 

• “C1167 polymorphism in the @GENE$ gene and D6S366 near the SOD2 gene are 
not associated with the development of @DISEASE$ and diabetic retinopathy in 
IDDM. “

-> Output: 0 : @GENE$ and @DISEASE$ are not related

200
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Question Answering
• Representations are fed into the output layer (1 layer FFNN; e.g. 𝑊 ∈ 𝑑768×2)

• We utilized multi-level transfer learning strategy : BioBERT -> SQuAD -> BioASQ

• Fine-tuning on SQuAD : Understand the structure of Question Answering 

• Fine-tuning on BioASQ : Enhance the model by target-domain data supervision

201

Performance of BioBERT on QA

- 12.24 MRR
improvement on average

- Achieves state-of-the-art 
of performances on 3 out 
of 3 datasets 
(BioASQ 4b, 5b, 6b)
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Selected as one of top-3 best papers 
in year 2020

203

Wrap-up
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Main Issues

• Representation

• Search space

• Truly inter-disciplinary field including computer science, 
chemistry, biology, pharmacology, medicine, animal sciences, 
etc.

• We, computer scientists, have a lot to do!

2020 DAY1 

206

+ interns in my lab contributed a lot.
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