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Al-based drug discovery

Sun Kim group
Department of Computer Science and Engineering, Bioinformatics Institute, Seoul National
University, Seoul, Korea

In this tutorial, we will deliver recent developments in Al-based drug discovery. Since drug
discovery is a very wide and complicated area of research, we will begin by explaining basic
concepts and database resources on small-molecule drug or compound; target of drug; molecular
signature before and after drug treatment; and phenotype such as drug sensitivity, toxicity, side
effect, LADME (liberation, absorption, distribution, metabolism, and excretion). Then, in Part 2 of
this tutorial, we will spent time to explain why Al-based drug discovery has emerged. Traditional
drug discovery focused on predicting targets and phenotypes directly. Related research topics
have been extensively investigated in the context of valid compound design, pharmacodynamics
and pharmacokinetics. However, gap between compounds and phenotypes are big and wide. As
molecular profiling techniques from genome and epigenome sequencing have been developed
rapidly over the years, a relatively new concept called pharmacogenomics has emerged and has
been extensively studied. In fact, information at the molecular level can be a bridge between
compounds and phenotypes, which can be an innovative technology for drug discovery. However,
computational analysis of data for drug discovery has become much more challenging since
traditional concepts, such as valid compound design, pharmacodynamics and pharmacokinetics,
already difficult computational problems and adding genomics dimension increases search space
dramatically on top of already extremely large search space of the drug discovery problem.
Fortunately, recent development of Al, deep learning, and graph mining technologies has begun to
shed light on this daunting computational problem. In Part 3, we will introduce some of the
representative examples of Al-based drug discovery technologies. A list of examples are:
reinforcement learning for de novo molecule design, GAN and autoencoder for compound design,
deep learning models for drug activity prediction, junction tree variational auto encoder for
generating valid molecules, deep learning and symbolic Al for planning chemical syntheses,
mixture representation learning for toxicity prediction, deep learning models for drug target
interaction, GAN model for generating compounds from molecular biology data, and deep learning
model for pharmacogenomcs study.
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Recent Amazing Progress
on Al-based Drug Discovery

« We were amazed how rapidly Al-based drug discovery
techniques have been developing!

» Today, we present
* Our view on Al-based drug discovery
* Introducing recent exemplary successes in this field.

The biopharma value chain for drug discovery

v
4 Postmarket
Launch & surveillance &

Manufacturing
commercialisation J . patient support

& supply chain

Research & Clinical
discovery development

.)) . 1 g
First screening and Hit to lead selection Lead optimisation Preclinical testing
hit identification Hits are confirmed and (druglcandidate In vivo assays are performed
High-throughput screening analogue clusters are selection) to test pharmacodynamics,
of large libraries of synthetized three to six Lead molecules are further pharmacokinetics and
chemicals to test their ability molecule clusters with modified and improved a toxicity of novel candidates
to modify the target positive better affinity and drug number of drug candidates 11in 25 drug candidates that
hits are selected for further properties are selected are selected (1 in 5000 from enter preclinical phase are
validation initial screening) selected for dlinical trial

studies

The drug discovery process usually takes five to six years from the start of stage | to the end of
preclinical testing. Of 10,000 small molecules initially screened, 10 are selected for clinical trials.™

Source: Deloitte analysis. L X X . X X .
https://www?2.deloitte.com/content/dam/insights/us/articles/32961 intelligent-drug-discovery/DI Intelligent-Drug-Discovery.pdf




FIGURE 5
Lock and key analogy showing the five main challenges for Al in drug discovery

LOCK AND KEY ANALOGY

__ Correct fit,
will react

Key = Drug Lock = Target .~ Correct fit = Reaction (high drug specificity)

(small molecule) (lgand) < Incorrect fit = No reaction
O—m t T T v
Finding locks Testing already Designing the Optimising the Testing optimised
for new doors available keys perfect key structure of available keys in vivo
(finding new (screening of small (de novo drug, dESIgﬂ) keys with good fit (predlinical testing)
diseases-associated molecule libraries) (drug optimisation/
targets) drug repurposing )

nn G
TARGI:T
cowoumns CANDIDATE PRECI.INIU\L
N ). IDENTIFICATION SELECI‘IGN TESTING

https://www?2.deloitte.com/content/dam/insights/us/articles/32961 intelligent-drug-discovery/DI Intelligent-Drug-Discovery.pdf

Source: Deloitte analysis.

Drug Discovery

* Drug discovery is resource intensive, and involves typical time-
lines of 10-20 years and costs that range from US$0.5 billion to
US$2.6 billion. Artificial intelligence promises to accelerate this
process and reduce costs by facilitating the rapid identification of
compounds.

» https://www.nature.com/articles/s41587-019-0224-x
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A Computer Scientist’'s View

» Drug discovery = exploring huge search space

« Single tools cannot solve this complex problem of dealing
with daunting search space

» Compound space
 Target gene space

» Genetic space

* Phenotype space

» Combination of all above

Exploring
Compound Space
(and also reaction space)




Chemical Space

Sequence SMILES, SMARTS, SELFIES

CC(=0)0C1=CC=CC=C1C(=0)0

Graph 2D/3D Graph structure
o)
J_ A 14
e} —_— e e
3y ey
07 “oH
Other Substructures or fingerprints, Image, etc.

Linear string representation:

Chemical Sequence-based Descriptors

o)

“ )tN/ Caffeine
| »

o)\llq N

SMILES (Simplified Molecular-Input Line Entry System) JCIM, 1988

a specification in the form of a line notation for describing the structure of chemical species using

short ASCII strings
ex) CN1C=NC2=C1C(=O)N(C(=0)N2C)C

SMARTS (SMILES ARbitrary Target Specification) Daylight Chem Info Systems

a language for specifying substructural patterns in molecules

ex) [H6]-[#7]1:[#6):[#7]:[#6)2:[#6]: 1:[#6] (=[#8]):[#7](:[#6] (=[#8]): [#7):2-[#6])-[#6]

SELFIES (SELF-referenclng Embedded Strings) NIPS, 2019

ex) [CI[N][C][=N][C][=C][Ring1][Ring2][C][Branch1_3][epsilon][=O][N][Branch1_3][Branch2_2][C][Branchl_3][epsilon][=0][N][Ring1][Branch1_3][C][C]




Two major issues with compound

» Search space

» A chemical space often referred to in cheminformatics is that of _
otential pharmacologically active molecules. Its size is estimated to be in
he order of 1090 molecules.

» https://en.wikipedia.org/wiki/Chemical space

* Synthesizability?
* |Is it possible to synthesize a given compound?
* What is the best planning for synthesizing the compound?

* These two issues will be explored with two recent deep learning
papers shortly.

Exploring
Target (gene) Space
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P ro te I n S a Proportion of human protein drug Proportion of small-molecule drugs

targets in major families that target major families

as Drug
Targets

B GPCRs (7TM1)

I lon channels

[ Kinases

I Nuclear receptors
H Other

303

M Percentage of compounds in ChEMBL
I Percentage of drugs

202

238

25

Percentage

Figure 1| Major protein families as drug targets. a | Distribution of human drug targets by gene family (left) and

A comprehensive map of molecular drug targets, Nature Reviews Drug Discovery. 2017

Target Protein Space

* Sequence Amino Acid Sequence

MLARALLLCA VLALSHTANP...

Sequential graph (K-mer)

* Graph 3D structure, spatial graph

e Other Domain, Image, etc.




Major issues

« Understanding protein sequence and family hierarchy
* GPCR proteins:

+ Deep learning based alignment-free method for protein family modeling and
prediction. Bioinformatics/ISMB. 2018

+ Deep Hierarchical Embedding for Simultaneous Modeling of GPCR Proteins in
a Unified Metric Space. In review

« Structure of proteins
* AlphaFold/AlphaFold2

* Improved grotein structure prediction using potentials from deep learning.
Nature 2020

Exploring
Genetic Space




Major tasks and challenges

» Genome (DNA)-based drug efficacy and sensitivity prediction
* Synthetic lethality

» Targeted cancer therapy

* Transcriptome (gene expression) based drug effect prediction

* Multi-omics based drug study

» The number of dimensions is huge.
+ 20,000 + tens of millions

Figure 1 Pharmacogenomics in cancer and overview of this review.
(A) Cancer pharmacogenomics and DL. Cancer ...

A B
Pharmacogenomics fWW;WBW‘
Cancer type/subtype dassification
— ) wadddbiye s ~——— + Dimension reduction of gane expressions by AEs
3 i - 1CGA TCGA | .« Cancer typoe/sublype classification by AEs
({08 (METS00) « Cancer type classification by CNNs
Prediction of drug response and synergy
Prediction of drug sensitivity
COLE-| . praciction of drug syneegy
GDSC
e’
Chemoinformatics-DL and novel therapeutics
) * Chomical descriptorsingerprints of drugs
Sertivty . Ooen Predicting drug response, syneegy, and reposition-
— D w PaDEL ing by incorporating cheenical descriplors/fingor
- Inhibition <
i~ i =
e — A=) Mode/mechanism of action
* Potential appicatons of DL
UNGS
Sienilarity/synergy g ChEMEL -
oo Retcour + vy - Pasion s o nevier DG EP Learning Conclusions and future directions
Brief Bioinform, bbz144, 2019. https://doi.org/10.1093/bib/bbz144 OXFORD

Deep learning of pharmacogenomics resources: moving towards precision oncology UNIVERSITY PRESS




Figure 4 DL models for predicting drug response and synergy. (A)
Models for predicting drug sensitivity of a single ...

B
Single drug sensitivity Multitask drug sensitivity Drug synergy prediction
pmdicuon prodictlons - . #CCLs x PDrug pairy
- o #Samples = #CCLS 6 }
: 3 ~0
g2 2
3 3 =0
(3 3 /7
o 3o B
e £ g
—
2 I 82
8 2 N § § Drug, +Drug
I | i -
g & gc
e
gé 3 -
(] & >
50
—
Autoencoder
il
Brief Bioinform, bbz144, https://doi.org/10.1093/bib/bbz144 OX_FORD

The content of this slide may be subject to copyright: please see the slide notes for details. UNIVERSITY PRESS

Databases (genome level)

* PharmGKB : pharmacogenomics resource sponsored by NIH
+ Collects information on human genetic variation and drug responses.
+ ‘Clinical evidence-centered’ Gene variant data
* Annotation data downloadable
» Contains non-CYP450 enzyme data

* PharmVar : catalogue on allelic variation of ADME genes
» Co-working with PharmGKB
» Contains more ‘sequence-centered’ variation data
» Sequence data downloadable

-10-




Databases (multi-omics)

» Multi-omics data before drug treatment with drug
response information (IC50 or AUC) :
» GDSC, CCLE, NCI-60

 Time-series gene expression data after drug
treatment :
* NCI TPW, NCI-DREAM

Exploring
Phenotype Space

-11-




Phenotypes

« ADME ﬁ’t\

» Toxicity
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Exploring
Compound Space
and
Target Gene Space
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Concept of ‘space’ — search space

a Bow-pharmacological space

- | A

Protein space  Interaction space Ligand space

Known interactions A Known ligands

. Known proteins

. New proteins = = Unknown interactions A New ligands

Li, Li, et al. "Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian
additive regression trees." Scientific reports 9.1 (2019): 1-12.

Exploring
Compound Space
and
Genetic Space

-13-




DRIM: A web-based
system for investigating
drug response at the
molecular level by
condition-specific multi-
omics data integration,
Frontiers in Genetics. In
press

Step 1.

Time-series drug response data

0/\ Step 3. Multi-omic profile of cell line
l Gene exp. cthylation _Mutation N ICso
D D D <
to I8 2 I8 L)
Step2. | ~
P Multi-omics embedding
@ @ @ I1Cso
SN\ SN\ N\ (&) +
tr T ? = -
Perturbed
subpathways @ @ () @ @ @
t1 12 3 I I
Multi-omics
resulator '—’/' '—’/- L= [
(&) (<)
SN SN SN
@ @ @
Perturbed 1 1 1
subpathways @ @ @ @ @ @
tl 2 t3
Step 4. . Drug . .
(, » Multi-omics regulators
Regulatory TF N A A for drug sensitivity
Multi-omics -/_>- -/_)- -/_>- KEGG pathway _ Pathwa _cnrichnuint
regulator / / S = .
H
(&) (<) B
SN SN SN P
tr T T 2
Perturbed 1 1 1
subpathways (] @ @ @ @ (S » Perturbed sub-pathway over time
tl 2 t3 2 Euf

Examples for
Exploring

Compound Space
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Two major issues with compound space

* Search space

* A chemical space often referred to in cheminformatics is that of
potential pharmacologically active molecules. Its size is estimated to
be in the order of 100 molecules.

» https://en.wikipedia.org/wiki/Chemical space

* Synthesizable?
* Is it possible to synthesize a given compound?
* What is the best planning for synthesizing the compound?

Dealing with How to Synthesize
Compound Space

Planning chemical syntheses with deep
neural networks and symbolic Al

Nature 2018

-15-




Translation of the traditional chemists’
retrosynthetic route representation to the
search tree representation.

a Chemical representation of the synthesis plan

U,

_OH
Boc,O + HN
8 7
Ph

CO,Me
A
MeO,C +6 Boc._ _OTBS
H
BOC\N/OH Boc\N,OTBS 4
) fr— ) —_— +
P2 En P B
¥ 5

b Search tree representation

Root (target)

@*@*@

Terminal
solved state

A= {1}
D= {4,5,6}

B= {2,6}
E= (8,9}

C= (3,6}
F={6,7,8}

a Synthesis planning with Monte Carlo tree search

b

(1) Selection ———>

Pick most

(2) Expansion

Retroanalyse, add new nodes to

> (3) Rollout —————>

Pick and evaluate

N

(4) Update

Incorporate evaluation
in the search tree

promising position tree by expansion procedure (see b) new position
IN®) A
B Oc
8
b Expansion procedure
Symbolic ——>» Neural > Symbolic —>» Neural
TI
Invariant T, R
Target encoding R‘
molecule  ——p > 22 > >
A ECFP4 :
Rk
Tn
Expansion policy: Keep the k best For each reaction use
prioritizes transformations and in-scope filter
transformations apply them to
the target

3Q
3Q
3Q
> » Symbolic
B Ranked precursor
C molecule positions
Keep likely
reactions

-16-




Architectures
of the
employed
neural
networks.

Expansion Polic

Prod

Fgep

aaaaaaaaaaaaaaaaaaaaaaaaaa

Dense 512, ELU

Dropout 0.3

i

Highway ELU

L

Dropout 0.1

T
€4

C

Softmax

=

In Scope Filter

...........

R

RRRRRRRR

Product Fingerprint
ECFP4, folded to 8192 dim; log(x+1)

L

Dense 512, ELU

—

..........

L
E Dropout © 3 J
L
5 x [ H ghw.i.y ELU ] ( Dense 1;)24, ELU j
11l
(o )
L
( Sigmoid j
l

An exemplary
six-step e¢ L Ve
synthesis route s

for an

intermediate in a .

drug candidate
synthesis.

O,N
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Dealing with Big Compound Space (1)

Deep reinforcement learning for de novo
drug design

Science Advances 25 Jul 2018

g2

E

Ae| nduj
ake| buippaqui3
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Evolution of generated structures as
chemical substructure reward increases.

.

A - 1 a ; B o
u:-_. = - - _.-:-':—ﬂ A "-“l'l-"-'l"ﬂl‘ﬁ
. ~,.,1;}.\| i T ;:»- £J LTl -
E N
T . T e L - J 1~
kA Eﬁ‘\- il '\:::f'l:::- - v:;.-ﬂ 'r.\: )
} L 1 i - v
. LN i 1= iy
. - T Y - - 'I' __" %
(A) Reward proportional to the total number of small group e
substituents
Reward increase >
T, -an".:o\.{'
L e
E o i - r-ra-
- *L?e S J), . -
¥ -
1 hopQe QX -
i = aa g o
LA | |1
s F 1 L)
. -P::b'-’-‘ S Ny T o & .-::-:1
¢ LD &°O 99 2
o L. e ) l..- . '\-“-ll;i
¥

(B) Reward proportional to themumber of benzene rings.

Stack RNN generates diverse molecules

;j Memory

=

No memory

No memory

1 E Memory W —~(

oz 04 95 08 10 05 06 07 08 09 10 1l
Hanitglo gitilantytohenearsstnelshbor Tanimoto similarity to the nearest neighbor

(A) Internal diversity of generated libraries. (B) Similarity of the generated libraries to the training
data set from the ChEMBL database.
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Optimized

RL generates
valid molecules

2 4 6 8 10
artition coefficient (logP)

2 0 2 4 6 8 10 12 °
JAK?2 inhibition (pIC50)

Number of substituents

Dealing with Big Compound Space (2)

Junction Tree Variational Autoencoder for
Molecular Graph Generation

ICML 2018

-20-




Main Idea to Reduce Search Space

X Node by Node Generation

(@) (@) S R (@) ==
D SR STAL S ) S@)
N N N N S N S
\ /

\/ Structure by Structure Generation

Figure 2. Comparison of two graph generation schemes: Structure
by structure approach is preferred as it avoids invalid intermediate
states (marked in red) encountered in node by node approach.

J u n Ct i o n Molecules o P Tree decomposistion Tm .
Tree O v — @ —
Molecular [ ‘@L
Generation e o
&
Encode l (Sec 2.2) Encode l (Sec 2.3)

Decode l (Sec 2.4)

A
s Decode
Q (Sec 2.5) \./.
cl
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Tree Decoding

Junction Tree Variational Autoencoder for Molecular Graph Generation

Algorithm 1 Tree decoding at sampling time

Require: Latent representation z7
1: Initialize: Tree T + 0
2: function SampleTree(s, t)
3. Set X; + all cluster labels that are chemically com-
patible with node 7 and its current neighbors.
4:  Set d; + expand with probability p;. > Eq.(11)
5. ifd; = expand and X; #  then .
6 Create anode j and add it to tree 7.
7: Sample the label of node j from &; . Eq.(12)
§
9
10:

SampleTree(j, t + 1)
end if
end function

Figure 4. Illustration of the tree decoding process. Nodes are la-

D eco d i n g a (1) Ground truth molecule ) Predicted TreeT ........
Molecule m H{
from a

Junction
Tree

Figure 5. Decode a molecule from a junction tree. 1) Ground truth

-22-




Graph Decoder

Let G(7) be the set of graphs whose junction tree is 7. De-
coding graph G from T = (V, £) is a structured prediction:

G =arg max [f%(G') (14)
G'€G(T)
where f¢ is a scoring function over candidate graphs. We
only consider scoring functions that decompose across the
clusters and their neighbors. In other words, each term in
the scoring function depends only on how a cluster C; is
attached to its neighboring clusters Cj, j € Nx(i) in the
tree 7. The problem of finding the highest scoring graph G-
bors Cj, j € Nz(i). We score G; as a candidate subgraph
by first deriving a vector representation h, and then using
f&(G;) = hg, - 7z as the subgraph score. To this end,

Dealing with Big Compound Space (3)

Inverse molecular design using machine
learning: Generative models for matter
engineering

Science 27 Jul 2018

-23-




Current paradigm _ “Closing the loop"
Closing the loop Organic o flom bttries Inverse design

requires Py

- Generative Sirulation
%

Material . | AQDS process W optimization

&

. . concepl molecule
Incorporating

inverse design, Molcular @
smart software (93), e integratedppelne

Al/ML, embedded
systems, and
robotics (87) into an
integrated
ecosystem.

Device
construction

Feedback cycle

I

ALSML
Device Software ﬁ
prototype Rabotics
Stability, @
Solubulity,
voltammetry

g Scaling and mnMﬂng g

Testing and
characterization

Example for
Exploring
Target (gene) Space
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Deep Hierarchical Embedding for Simultaneous Model
ing of GPCR Proteins in a Unified Metric Space

Taeheon Lee, et al
in review

Backgrounds .
G-protein Coupled Receptors
largest transmembrane protein family Previous Studies

important drug targets
widely diverged protein family
hierarchical class structure GPCR

Classifying / Modeling each hierarchical classes

| Famiy A || Family B || Family C |

dmine || Pe;)'tide | | i | \Calcsé;lse\ | Puher

Limits
Set of disconnected models for each subparts
No unified representation for GPCR sequences

Stevens, Raymond C., et al. "The GPCR Network: a large-scale collaboration to determine human GPCR structure and function.
" Nature reviews Drug discovery 12.1 (2013): 25.
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Introduction

Our work

Our Model

Modeling hierarchical class structurein ~  « .
GPCR = Y

- with a unified model

YT Y

- into a single metric space

- using deep learning
[MRLCTIRPL]
family 1 o 2. | ¥ ‘

Key contributions i\
vector embedding 1 !

ommmOrBz
EEEEEEEEE
h B
OB L
= N
=
]
5 = =E ]

metric distances between vectors

nnnnnn

sub-subfamily 1 embedding
_ vector

sssssss
‘‘‘‘‘‘‘‘‘‘

©

subfamily 1

Methods
Nteural Network Architecture

Data representation e ertas
One-hot encoding ‘:nn;m
M
Feature extractor with CNN L
. c
1-D motif discovery convolutional filter [DeepBind] ! o
Various window lengths convolutional filter ~[DeepFam] 3 =
c T
Local & significant sequence feature is learned comvolution - t-max pooling

1-max pooling & concatenation
Existence of learned motifs in the sequence [DeepBind]

Alipanahi, Babak, et al. "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning." Nature bio
technology 33.8 (2015): 831.

Seo, Seokjun, et al. "DeepFam: deep learning based alignment-free method for protein family modeling and prediction." Bioinfo
rmatics 34.13 (2018): i254-i262.
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Methods
Nteural Network Architecture

Embedding layer
Dimension reduction on features from CNN layer e
Representation of the input sequence

Subfamily
Prediction

Multiple branch classifier [MDNET]
S Unification of features from three hierarchical levels

Sub-subfamily
Prediction

Generation of shared features from three different levels

embedding multi-branch
vector classifier

Nam, Hyeonseob, and Bohyung Han. "Learning multi-domain convolutional neural networks for visual tracking." Proceedings of the I
EEE Conference on Computer Vision and Pattern Recognition. 2016.

Methods .
Loss Function

Center loss[Center loss]

Le= Y@ ~neGidls ———— L= max(Eud(x,)—uc(xauz,m)

i=1

d(x;) :representation of the sequence x, in the neural network

\. . - Lc(x;) : center representation of the class that the sequence x; belongs to
.° - -, - m : class boundary margin (configured for each level)
S F S ,- 3 n : number of data points
. Compact representation in terms of distances
center loss
Softmax loss (with cross entropy)
et . .
softmax o(x); = T n number of data points
- N K :number of classes
w *e i Cross entropy Ls = *Z}’: log a(x;) »; :class label of data i
« .. o} - L] =
V'S - Separable representation of data in different classes

softmax loss

Wen, Yandong, et al. "A discriminative feature learning approach for deep face recognition." European conference on computer vision.
Springer, Cham, 2016.
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Results

Analysis on Embedding Vectors

Cluster Analysis

Family Labels

Subfamily Labels

Sub-subfamily Labels

Silhouette S
|
1

Ibﬂl [ I
£

Methods
e RSiiaa———]
oottt =t=t=t=t eSS e—=1

172023262932 3538 4144 4760 5356 59 535650626563 7174 77808386 89929598
Number of clusters : K

m== Proposed Method
wio Center Loss

= wio Multiple Branch

we DeepFam

= Autoencoder

- MLP

= 3-mer

- 4-mer

Phylogenetic Structure

Distance matrix from
the Proposed Method

Phlyogenetic Tree from

Distance matrix from DeepFam the Proposed Method

Results

Motif Analysis from Embeddin Vectors

Fine-grained

Coarse-grained

b WQ
-

Weuleis.e

* Cluster 5-2

N # Total :
N FRamiyB e

I : 46

aggilmld; £ N
Mol alen

Cluster 95-26
#Total : 44

st

sudFltpreL:
FERKAKTLGTokeof

Motif analysis
motif discovery
dataset selection

Observations

Coarse-grained

- DRY, NSxxNPxxY : Family A
- LIGWG, GPVLASLL, CFLXEVQ : Family B

Fine-grained
- RKAAKTLG, FKQLHXPTM : Traceamine(A)
- SPMxCCLAxDML : Melanocortin(A)
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Example for
Exploring
Target (gene) Space

Improved protein structure
prediction using potentials
from deep learning

AlphaFold

Nature volume 577, pages706-710(2020)
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Success of Bioinformatics: contact prediction (2014)

David Baker, U of Washington, Seattle

Related works by many other authors since 1999

Contact in 3D str Co-evolution in 1D seq
4 4 YiTitit
- YiTiPiy
PivivyiT
Pirivit

Slide from Chaok Seok @ SNU

Introduction:
Determining Protein Structure

» Structure with low potential is stable!

* Protein structure prediction is to find a lowest potential
structure with a given sequence.

 Quite a number of techniques are combined.

» Structure with low potential are searched with deep

learning models for predicting torsion angles and
distances.
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Simulated Annealing

« Randomly choose positions / lower the probability of moving
at each step

simulated
annealing algorithm on
an off-lattice model

AB sequence
Folded structure

E=8831025634.420 E=9678.444 E=69.492 E=-51.841 E=-70.492
E=-195335 E=-180.769 E=.150.329 E=-131.004 E=.90.110

Structural changes in simulating protein folding conformation from high energy tolow energy

128 dim

€ o
a 05|
°
ii?,"&"sf Deep neural Distance and torsion Gradient descent on g 04 Batch norm
e network distribution predictions protein-specific potential 2100
02|
L Noisy restarts

|
i
|
v

Project down

64 dim

500/ /oo 12007

led bins deep 10" 10°
Iteration
54 ,"\5 { [’55“ 144
\‘o 280 1

R R R R R

L x L 2D covariation features

2 0.8 \
: i 1)
T 2 0.6 I 602
2 g 0.5+ - 50 =
° $ 02 P Mscore 24 5
2 ~ 03] —rmsd.  [3g :
g 0.2 20
a = ol 4
, 1 - F10 = i
2 ‘ M| T 3x3 dilated
3 200 400 600 800 1,000 1,200 g
e 0 r— i — T |
@ 0 el Y EEE—— | Y
3 0 BE Batch norm
: 0 =
=] 4 i = F
% 220 residual convolution blocks N 0 ! | 3]
§ 0 200 400 600 800 1000 1200 MNat g i 01110
E Gradient descent steps Prediction x~!

Sequence
‘ Torsion Sample | [nitialization
- Distributions T ew
HHblits & N MSA Deep
PSI-BLAST Features ResNet v 2
Distance Potential Gradient | o H
— u#enoe Mol "] B |2 The layers used in one
ki ¥ g block of the deep residual
gy Structure convolutional network
Pool

-31-




Training Set Preprocessing

 Extract MSA
 Uniclust30 dataset -> search with HHblits
» Position-specific substitution probabilities & covariation features

* Input features
* 1-hot amino acid type (21 features)
* Profile : PSI-BLAST, HHblits profiles, HMM profile
* Biases, deletion probability, residue index
+ Covariation : Potts model parameters (484 + 1 (Frobenius norm))

[ ) [ ) [ )
Distance Prediction Model

66666

« 220 layer ResNet
« 7 * 4(dilation 1, 2, 4, 8) : 256 channels
» 48 * 4(dilation 1, 2, 4, 8) : 128 channels [ =

* Target : distance between the C[ atoms of the residues; divided the
range 2-22 A into 64 equal bins

* Auxiliary loss : secondary structure 0.005; accessible surface area :
0.001
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Distogram Prediction(1)

* Divided L x L distance matrix into non-overlapping 64 x 64
crops
» Outcome for each 1x1 bin is probability distribution

» Data Augmentation

* Randomize the offset of the crops (many thousands of different
training samples from single protein)

» Add noise proportional to the ground truth resolution to the atom
coordinates

HHHHHHH

eeeeeeee

Distogram Prediction(2)

» To predict each L x L residue pairs, many 64 x 64 crops are
combines
» Several tilings are produced and averaged together

* 64 x 64 different possible tilings
* heavier weighting for the predictions near the center of the crop

* Four separate models with slightly different hyperparameters are
averaged together

* Mode of combined distogram is used as prediction (figure on
nextpage) ==

HHHHHHH

55555555
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Tortion Prediction

* Predicts marginal Ramachandran distribution for each residue
* Probability distribution is divided into 10° x 10° bins (36 x 36 bins)

Ramachandran Plot

180

135

90

45

»

N
]

BCL-2

m—T

o4 ° ‘|"

v (deg)

-45

—135-"‘,%.”‘, sl T L | A

-180 -135 -90 -45 0 45 90 135 180
¢ (deg)

Building differentiable potential \)

 Discrete distance distribution
* Interpolated with a cubic spline
b -[’;distaucc(x) = - Z 102, })(dlj | S: I\ISA(S)) — lOg _‘D(d” | length(sag)

1., i¥#]
e Tortion distributions

* Each marginal predictions are fitted with a unimodal von Mises
Distribution

e Rosetta’s Vscore2_smooth
» Van der Waals term to prevent steric clashes
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Structure realization

« We can now compute Differentiable Potential given torsion
angle initialization!
b Vtotal(qbsw) = VdistancE(G(‘;b:w))+I’ftorsion(¢=¢)+l‘{acore2_5mooth(G(¢s¢))

,  Newton method

* Minimize Vwa using gradient descent
 L-BFGS, a variation of quasi-newton method, is used

D o

£ Y

Initialization |____»

P Y

]

Ch. @Y
1 éﬁgﬂ\} S wgéﬁ‘x Structure
28I % @ N/

U T pool

| ——Fn
: ‘/j"r/ — TM score :§§
_LC —rmsd.  [3g
] \gx:gg
200 400 600 830 1.000 1200

TM score

cooooood
ooNoRaoN®
T

AlphaFold2 @ CASP14, 2020
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Median Free-Modelling Accuracy

100
ALPHAFOLD 2
80
60 ALPHAFOLD
—
[m]
)
40
20
@)
CASP7 CASP8 CASP9 CASP10 CASPN CASP12 CASP13 CASP14
2006 2008 2010 2012 2014 2016 2018 2020
CASP
Slide from Chaok Seok @ SNU
. H s BT
AlphaFold2: Deep learning2| &g (2020)
John Jumper
(Mentioned physics & geometry in his talk)
MSA embedding Sequence-residue edges
- Res'iue_s = Confidence
i B | AvABHE Residues —» Residues —» Score
o T " Ly N =] o =TT
Genetics i kedl o 29 24 i
& embed g 3w )
e Ll It -
Protein sequence |, Structure
§ | AvABKS module
Residues — Residues —
SHABNME HABNME
Embed & %1 B IENEE] B .
outer sum g‘j u gv | |
& | e
{o 4 | — Pairwise
distances
Residue-residue edges 3D structure

Slide from Chaok Seok @ SNU
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John Jumper: Data7} Z238}X| 002 st&52 & & 4= U= network O] EQ3}C}
.- - “ . N “ © 2020 DeepMind Technologies Limited
Inductive Bias for Deep Learning Models
. . Convolutional Networks Recurrent Networks
o (e.g. computer vision) (e.g. language)
e data in regular grid ¢ data in ordered sequence
. e information flow to local neighbours e information flow sequentially
Graph Networks (e.g. recommender Attention Module (e.g. language)
systems or mOIeCUIeS) .—. e data in unordered set
e data in fixed graph structure ’_. + information flow dynamically controlled
e information flow along fixed edges ’_. by the network (via keys and gueries)

Slide from Chaok Seok @ SNU

John Jumper: Physical insights are built into the network

Putting our protein knowledge into the model e

—  Physical insights are built into the network structure, not just a process around it
—  End-to-end system directly producing a structure instead of inter-residue distances

— Inductive biases reflect our knowledge of protein physics and geometry

The positions of residues in the sequence are de-emphasized

Instead residues that are close in the folded protein need to communicate

The network iteratively learns a graph of which residues are close, while reasoning
over this implicit graph as it is being built

(]

[e 3]

residues

o

Slide from Chaok Seok @ SNU
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Embedding Trunk Heads
© 2020 DeepMind Technolagies Limited
MSA sequence-residue edges Confidence )
residues - score H_Igh
111414 residues residues .. | confidence
173 bt @
8 A o4 W Attention L,OW
5 sh —_— confidenct
= S m
§m @ - ||
N fee
Genetic Update M
search pairs
y SASEEE N

\pairing

residues
.

Jirett

residues
vy w

BERERES

Pairwise

u@

s

3D structure

distances

sanpisal
senpise.

1 residue-residue edges

MSA picture inspired by: Riesselman, A.J., Ingraham, J.B. & Marks, D.S.,
Nature Methods (2818) doi:18.1838/s41592-818-8138-4

(o)

templates

Slide from Chaok Seok @ SNU

© 2020 DeepMind Technologies Limited

Biological context

=  Computational structure prediction is typically underspecified
Oligomeric state, ligands, DNA-binding, experimental conditions, multiple conformations etc.

= Our networks implicitly models the missing context

= Uses a variety of physical and evolutionary information (e.g. profile-only is still pretty accurate)

T1080 (trimer)

T1056 (zinc binding)
| 4

Experimental structure

AlphaFold / Experiment AlphaFold (monomer prediction x3)

TBM-hard, 98.2 GDT FM/TBM, 85.9 GDT

Slide from Chaok Seok @ SNU
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Example for
Exploring
Phenotype Space (Toxicity)

TOP: A deep mixture representation

learning method for boosting molecular
toxicity prediction

Methods. 2020
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(2PN | ol
a® —> 1 |:> Activate B cells —=) Immune response
a® e =M
Normal : :
e Con T e o =) Normal cell funcion - -

reductase

Cardiovascular disease(high cholesterol level)

= Lovering cholsteralsynthess

"> Kidney : protein reabsorption

Muscle : Fiber damage
Others : Glucose uptake
Hormone secretion

Histamine Terfenadine > hgrg channel

On-target = Off-target =

H1 receptor §
Arrhythmias

Allergic reaction  Antihistaminic response

Neuronal signaling

Inflammation

Polymorphisms of metabolism enzymes
Individual genetic variance

j Lack of enzyme activity, |:> Occurs rare toxic

* Apoptosis
- Programmed cell death
*  Necrosis
- Unregulated cell death

Sensitive immune response,

nmhwN =

Pharmacological intervention model

M 3 I AH 0] - Tox21

1C-on_1pultational Animal Toxicology In vit;_c: c:ll-l:‘a_s:dt:ssay:, .
oxicology quantitative high-throughpu
E[;a;fgga(& DRUG T . screening and informatics
s o . @ National Toxicology Program
H M g U.S. Department of Health and Human Services Na,mm‘ Center
Human Toxicology Data S S for Advancing

"4 mo“" Tvans\ahona\ Sciences

TOQ

Nuclear receptor signaling Stress response elements

oress /7 EEED O A,G}
Ao ED B ¢
]

0 %[ e o

New
protein

PLasMA —
MEMBRANE
OF TARGET
CELL.

* CrropLass , el

AR, AhR, ER, Aromatase, PPAR-y ARE, ATAD5, HSE, MMP, p53
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=90 2B E S HO|EH|0|X 2| AE,
HlO|E{H| O] ADFCE Z40f CHet 7|=at AL 7| -0 THE
AT SHof| A HES HO[F Ho|~ 28 ofF.

® ©o
= - = o Chemical Toxicity Data
ToCast  CHUS MEX, MSsH 88 52 120 o < 85007} Srtoee
700 B&F 2| /n vitro assayE high-throughput a . .
screening 2 Z7ot G| 0| F H|0|A :@:I:I +
Tox21 12702 =2 M= =4 Ef2o Chst ststE&0l o 800074 (EE:O
HI-S 2 Luciferase assay 62 & SHEHO =2 B
£33 Hlo|E Hjo|A e,
DSSTOX  sjstE2F 0| E2|otstd EA It Tox21, ToxCast2| 2 740,0007H
W2t dY Ho|HE ASdH MSot= Hlo|E
H| o] A DSSTox SDF Files
ClinTox FDAO| 2015 L2t =M ZHE YA A”0|  2F 150070 Standardized
AlIlsE OFF H|w Documented
AT E0l or2 o] SRt fst £5 Hu Hlo| oF N Structure-Searchabie
SIDER S0l ofEo & ot 52 1500 i
H 28 o2 mago paE s A Y H Wininn i
O|HE Bl=of A2t of w2t 2/ XS
o] W=0j Chst stetEdo| 54 A 9 12,0007H
C

ECOTOX 13,0000

ToxCast. Chemical Research in Toxicology 2011 24 (8), 1251-1262

Tox21: National Research Council. 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy.
DSSTOX: Computational Toxicology, 12 (2019), p. 100096

ClinTox: PLOS ONE, 2013, 8

SIDER:Nucleic Acids Research, 2016, Vol. 44, Database issue D1075-D1079

ECOTOX: Environmental toxicology and chemistry 30.8 (2011)

Problem to be solved here for Toxicity

« Any compounds that target very important genes are toxic.

« Example) 12 proteins in Tox21 database

-41-




[ |
To p ( SoftMax output layer
Architecture

Fully connected layers

{ ]

[ Concatenation layer

| [
BiGRU network [

~

Fully connected
neural network

v,
i

] MW: 271.53, logP: 5.55, ...

| Word Embedding |

Segmentation and
numeralization

COclee(C=0)cecl O

Segmel‘ltation Dictionary of

component elements

SMILES string l

Component elements
CIC[NH2+JCCN1CO  —» sagmentation
The sequence of component elements
C1C[NH2+)]CCN1CO

The Sequence scanning
CIC[NH2+]CCNICO

Words 1
CIC[NH2+]JCCN1
1C[NH2+]CCNIC
C[NH2+]CCN1CO
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- ——— O
X : : g
x — § — ﬁ > g —»
! & ; “4---4 'E oot 5 b+ End
Physiochemical properties: X+~ |3 8 §| || || Littion
' e I~ - 4
Pig £ Xl Fully connected neural network sl \% 2 Calculate
Training [ +” ® g - E @* oradient
Dataset |\, BIGRU network {5 | —
“ 51 |1 Embedding (s,)=#{BiGRU cell (v,ﬂ-.*‘... 7 g |g
SMILES substrings: s g-’ |2
strings: § §7 —w{Embedding (s;) - BIGRU cell (v;) % e 8 E »
e :' § = Foed forward direction
t 3 ; o
<+ Back direction |
Sly F—w{Embedding (s)f= T BiGRU cell (vy) o U0 L B al
[ofe] e[ - Tafs]u]
—pf[o[t]1] - Tofof1]
‘1‘0‘0‘:.‘1‘0‘1‘ /Trainitset//Trainfnset/
GA-based Genes ¢ ¢g ¢g
physiochemical e Crrt e s |
feature selection Tt | [T
with selected with selected
feature subset feature subset
v
Training TOP
predictor

Genetic operations

Trained TOP
predictor

Prediction accuracy

Fitness evaluation

Selection

Crossover

Mutation

| Optimized feature subset |
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An ablation study on ToxB

Model AUC

TOP with full components 0.912 + 0.005
Without samples augmentation 0.908 + 0.003
Without physiochemical properties learning 0.717 £ 0.012
Without BiGRU-based SMILES string learning 0.632 + 0.001
Replacing BiGRU with GRU 0.899 + 0.007
Replacing BiGRU with BiRNN 0.903 + 0.006

Example for
Exploring
Phenotype Space (Drug Metabolosm)

Slide made by Dongmin Bang
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Backgroud: ADME

* ADME : Disposition of a drug within an organism

V7 o
2 ~ il 7 @ - 69

Absorption Distribution Metabolism Excretion
=83 2 CH At Hij A
v v
DTI DTI
Efficacy Efficacy
Toxicity Toxicity

Background: metabolism & CYP450

* Metabolism : transformation of xenobiotics into excretable form

* Cytochrome P450 : “The most important enzyme” in metabolism
» Mostly expressed in the liver and small intestine
» Superfamily of at least 57 isoforms
* Activity of CYP450 directly effects the drug efficacy/toxicity
» Expression pattern
* Inhibition level — Drug-drug interaction
* Genetic polymorphism
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Background: metabolism & CYP450

* CYP450 and genetic polymorphism
» Contains Highly polymorphic genes
» Activity Score(AS) system : translates genotype to phenotype
* Classifies phenotypes into “Decreased/Normal/Increased function”
» Adopted by CPIC(Clinical Pharmacogenetics Implementation Consortium)

* “Guidelines for CYP3A5 Genotype and Tacrolimus Dosing”

http://www.cypalleles ki.se/

introduction : metabolism & CYP450

* CYP450 and genetic polymorphism
* Increased function : gene duplication

» Decreased function : gene deletion, frameshift mutation, CNV

» Example : CYP2D6 — metabolizes 25-30% of drugs
» Wild-type : CYP2D6*1 — Normal function
* 46% of Asian population : CYP2D6*10 — Decreased function
» 5% of Western population : CYP2D6* x N — Increased function

» “Ultrarapid metabolizer, UM”

http://www.cypalleles.ki.se/
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Metabolism Prediction by Transfer Learning

HOME | ABOUT | SUBMIT

b i O RX iV | NEWS & NOTES | ALERTS / RSS

| CHANNELS

THE PREPRINT SERVER FOR BIOLOGY

New Results ¢© Comment on this paper

Transfer learning enables prediction of
CYP2D6 haplotype function

Gregory Mclnnes, Rachel Dalton, Katrin Sangkuhl,
Michelle Whirl-Carrillo, Seung-been Lee, Philip S.Tsao,
Andrea Gaedigk, © Russ B. Altman, 2 Erica L. Woodahl
doi: https://doi.org/10.1101/684357

This article is a preprint and has not been certified by peer review [what
does this mean?].

* bioRxiv, Feb 2020
» Dept. of Biomedical Data Science, S
tanford Univ

» Dept of Biomedical Science, Univ of
Montana

* Prediction of CYP2D6 function from
DNA sequence with transfer learning

Metabolism prediction via deep learning

 Prediction of CYP2D6 function from DNA sequence
* Input : One-hot encoded DNA sequence(4) + annotation data(8)

« Total 7417 x 12 matrix

» Output : muti-class classification into [ nhormal / decreased / no function ]

sJake] [euognNIoAUCD
siafe|
pejosuuod AjIng

O P >P>POOG-H>»OO

No function

Normal
Normal >0.7
&
No Func > 0.5,
Decreased
Normal <= 0.7
&

No Func > 0.5

No function

Normal <= 0.7
&
o Func <=0
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Metabolism prediction via deep learning

 Transfer learning improves prediction accuracy (40% — 88%)
» Too small dataset : Only 56 sequence w/ curated functions

» Applied transfer learning on 3-layer CNN

Transfer learning
56 seq with known function

u, 2 3 7 :
SaUma] Oocrossed No function Uncurated function c
A

= m

T §, =

] | <

f ! ) ¢ g ES

c ] @ 3

Training data Validation data Uncurated A g §

M 4Normal B 7 Normal B 71 Uncurated A E

8 Decreased 6 Decreased G
B 19 No function [l 12 No function Cc

5971 2| simulated CYP2D6 diploid =&
from 'gnomAD' database

Activity score classification
simulated CYP2D6 T 0.
diploid sequence 1

1. Simulated dipleoid’s activity score classification

1.5
2

2. Liver microsome sample activity regression 3147H2| #X| liver microsome sample data

L

microsome CYP2D6 De}(amethaspne metabolism
rate regression

diploid sequence -0 ~ 1

3. CYP2D6 genome sequehce data activity classification

Metabolism activity classification

CYP2D6 - Increased
haploid sequence - MNormal

- Decreased

Slide made by Dongmin Bang
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Sumamry:
Metabolism prediction via deep learning

 Transfer learning improves prediction accuracy (40% — 88%)

» Step 1 : predicting activity score of 50,000 simulated sequences

» Created by introducing SNVs and INDELSs on sites with low importance

» Step 2 : regression model of predicting functional activity data from actual liver micros
ome samples

» Sequenced liver microsome data with measured metabolic activity

* Weights from pretrained network are copied and used as starting weight

Survey: methods for prediction of metabolism

st | st | « Chem Biol Drug Des. 2019 Apr

mmvisw WiLey 8 * Wellcome Genome Campus, Cambridge,
Computational methods and tools to predict cytochrome P450 UK

metabolism for drug discovery

Jonathan D. Tyzack’ | Johannes Kirchmair®**

» 3 categories of prediction tools :

In this review, we present important, recent developments in the computational pre-

ot yiame P50 CYF el i e st sy e * Prediction of substrates/inhibitors of CYP

models for the vari CYP metabolism prediction, in-
e of metabolism predictors (i.c.,

i et e e bl s i » Site of Metabolism(SoM) prediction
A . * Metabolite structure prediction

. EMBL-EBI, Wellcome
ambridge, UK each method and discuss future implications for the field of metabolism prediction in
drug discovery.

KEYWORDS
eytochrome P450, drug discovery, enzyme-ligand interaction, machine learning, metabolism, metabolite
mmmmmmmm prediction, reactivity, sites of metabolism

BFS2017TMTO1
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Survey: methods for prediction of metabolism

+ 1) Prediction of substrates/inhibitors of CYP
» Understanding the specificity of individual CYP isoforms
* Assists prediction of Drug-Drug Interactions(DDI)

CYP3A4/5 (30.2%)

M s CYP2J2 (3%)
Sl ¢ ; .
«Inflammation () Polymorphism(y)  CYP2E1 (3%)

L +Induction (1)
EobmaplE) / *Inflammation (1)
< *Age (M) «Various diseases (1)
*Sex (m>f)

CYP1A2 (8.9%)

*Induction (1)

«Inflammation ({) / CYP2D6 (20%)
*Cholestasis ({) *Polymorphism ({ 1)

*Age (1)
*(Sex, m>f ?)
* (Polymorphism)

* Inflammation ()

CYP2A6 (3.4%)
*Polymorphism ({, 1)
*Induction (1)
 Inflammation (V)

™™ cYP2Be (7.2%)

CYP2C19 (6.8%)
*Polymorphism (J 1)
*Induction (1)
+Induction (1) CYP2C9 (12.8%) * Inflammation ({)

*Polymorphism ({ 1) *(Sex ?)

« Inflammation (<) CYP2C8 (4.7%) +Induction (1)
«Age (1) *Induction (1) . Polymorghnsm (V)
*(Sex, f>m ?) * Polymorphism (4 1)  Inflammation ()

« Inflammation () *Age (1)

*Age (1) *(Sex?)

Olubadewa A. Fatunde et al, The Role of CYP450 Drug Meta
bolism in Precision Cardio-Oncology, /nt. J. Mol. Sci. 2020 Fe
h

Survey: methods for prediction of metabolism

1) Prediction of substrates/inhibitors of CYP
» Docking methods — 3D modeling of substrate binding
* Machine learning methods based on enzyme-substate/inhibitor interaction data
+ SwissADME(Daina et al. 2017) : web-based SVM model for prediction of CYP inhibitors

Scroll to the top of
the page

Molecule name or
identifier

Submit this
molecule to other
SwissDrugDesign
tools

Bioavailability
Radar

Contextual Help

Daina, A, Michielin, O. & Zoete, V. SwissADME: a free web tool to evalu
ate pharmacokinetics, drug-likeness and medicinal chemistry friendliness

_ of small molecules. Sci Rep. 2017 Mar
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Survey: methods for prediction of metabolism

« 2) Site of Metabolism(SoM) prediction
+ 2-step model : Reactivity prediction & Accessibility prediction

B
enzyme  deltaP position

CYP3A4 0.713

0.592

¥ CYP2C9 0.803
0.616

CYP2C19 0.510

CYP1A2  0.504

0.0 ?/,, { ’ )
p 7 A
- L N -
&N O~ O
o N
H
“Results for in silico SoM prediction for MWO005"
Martyna Z Wrobel et al. Synthesis and biological evaluation of new multi-ta

rget 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antide
pressant effect, fur J Med Chem. Dec 2019

Survey: methods for prediction of metabolism

» 3) Metabolite structure prediction
* MetaTox(Rudik et al., 2017) : Prediction of metabolite and estimates its toxicity
* Meteor Nexus(Marchant et al., 2008) : SoM & metabolite prediction via k-nearest neig
hbor approach

M1)
0-Glucuronidation

(M8)
Methylation

Prediction in the Metatox of Bergenin én; its metabolites and their respective chemical reactions.

Rudik et al., MetaTox: Web Application for Predicting Struct
ure and Toxicity of Xenobiotics' Metabolites, / Chem Inf Mo
del. 2017 Apr
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Examples for
Exploring
Genetic (genome) Space

The druggable genome and support for
target identification and validation in
drug development

» Science Translational Medicine 29 Mar 2017
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» Abstract

a disease) and target validation

* Target identification (determinin?d

the correct drug targets for
emonstrating an effect of
disease end

target perturbation on disease biomarkers an
points) are important steps in drug development. Clinically
relevant associations of variants in genes encoding drug
targets model the effect of modifying the same targets
pharmacologically. To delineate drufg development (including
repurposing) opportunities arising from this paradigm, we
connected complex disease- and biomarker-associated loci
from genome-wide association studies to an updated set of
genes encoding druggable human proteins, to agents with

loactivity against these targets, and, where there were
licensed drugs, to clinical indications. We used this set of
genes to inform the design of a new genotyping array, which
will enable association studies of druggable genes for drug
target selection and validation in human disease.

Digestive s

. SI-
= _d,,,seasé’s 0
I Ir T

Potential repurposing
opportunities from
the discordant GWAS
phenotype/drug
indication matches

This connection is
determined by a drug
target gene occurring
within 50 kbp of a
GWAS association
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Cancer Caell

o CelPress Cancer Cell

Predicting Drug Response and Synergy
Using a Deep Learning Model of Human Cancer Cells

Brent M. Kuenzi,'-* Jisoo Park,’-> Samson H. Fong,'-? Kyle S. Sanchez,’ John Lee,’ Jason F. Kreisberg,' Jianzhu Ma,*
and Trey Ideker'-%5*

Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA

2Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA

3Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA

“Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

SThese authors contributed equally

SLead Contact

*Correspondence: tideker@ucsd.edu

https://doi.org/10.1016/j.ccell.2020.09.014

Example for
Exploring
Compound Space
and
Target Gene Space
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Concept of ‘space’ — search space

a Bow-pharmacological space

- | A

Protein space  Interaction space Ligand space

@ known proteins Known interactions A Known ligands
. New proteins = = Unknown interactions A New ligands

Li, Li, et al. "Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian
additive regression trees." Scientific reports 9.1 (2019): 1-12.

Deep learning enables rapid
identification of potent DDR1 kinase
inhibitors

Nature Biotechnology 2019

111
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Introduction

 To design DDR1 kinase inhibitor, used are

« VAE with strong prior from tensor decomposition
* RL with three SOMs (self organizing maps)

Brief Summary

30,000 Mg
Day 9 structures @I 40 structures
L4 ®Day23
[ ] [ ] ® Py
7 days 12 days 2 days
Target selection BRI GENTARL Prioritization
by WuXi AppTec
DDA kinase + Relerence + Model training « Descriptors
compounds + Structure generation = MCFs + Prioritization
- mi"asﬁ '”"ibi“’t"s * Reward funclions = Clustering Six compounds
= Non-kinase sel ) . Dmers\ty Wuxi Aop T
i mmf" mane = Vendors VX1 Appiec
[Poase + Kohonen
+ Praprocessing « RMSD
+ Qutliers + Sammen
= Pharmacophore
hypothesis « IP assessmant
d . . .
b

Day 35

25 days

Synthesis

+ Synthetic routes analysis

Biological evaluation

Day 46
®
aim

S\

9
I
l-—- .
L ] Movel nanomolar hits
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Database

* 1. Zinc Clean Leads collection(1,936,962 molecules)

» molecular weight in the range from 250 to 350 Daltons, a number of rotatable bonds nothreater than 7, and XlogP less
than or equal to 3.5. We removed molecules containing charged atoms or atoms besides C, N, S, O, F, Cl, Br, H or cycles
longer than 8 atoms. The molecules were filtered via medicinal chemistry filters (MCFs) and PAINS
filters.(https://github.com/molecularsets/moses)

« 2. Known DDR1 Kinase Inhibitors
« 3. Common Kinase Inhibitors (positive)

* 4. Molecules that act on Non-Kinase Targets (negative)
» 2~4: from ChemBL dataset

e 5. Patent Data for claimed molecules
« www.globaldata.com 201747t X| £8 S5 & 2=17,0005

e 6. 3D Structure of DDR1 Inhibitors

114

Model Architecture

Latent space prior is learned by tensor train decomposition,
representing relationship between chemical properties and latent vector z.

? MCF A piC50 MCE-18

Learning the chemical space

Chemical A Latent space O 1< Chemical
space A 3 : space
sty OIS0 E-l 07 -
Py 2/ € ' ' P es
o ‘,ix} : : ’ W 'i A
Encoder Generator

Generation Strategy T
5
“) Specific Kinase SOM

General Kinase SOM

),
v

Trending SOM

Generator Rewards
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Reinforcement Learning

Reward function
mIgX]Ez..pw[z]‘R(z)’ R(Z) = ]Ex.,pa[xlz} [Rgeneral(x) + Rspeclﬁc(x] + Rtrendlng(x]]

1.general kinase SOM, R cneral)
predict the activity of compounds

against kinases Vg, oR(E)=Eap )% logh, (2)-RE

For reducing the variance of the gradient

2.specific kinase SOM., R s using 'baseline’ technique.

P ' sp.eafu:) The rewards for each molecule in a batch
select compounds located in neurons are calculated and averaged, and the
associated with DDR1 inhibitors within average reward is then subtracted from

X each individual reward:
the whole kinase map

1 +
R(z)-~ Y R(z)

N
1

‘U’IFEIqu[Z}R (z) ~ N E leogpw (z)

i=1 j=1

3.trending SOM, R ending)
assess the novelty of chemical structures.
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Experiments

* Docking simulation

in the Maestro suite (https://www.schrodinger.com). PDB structure 3ZOS was
preprocessed and energy minimized using the Prep module

* In vitro activity assays

The activity of the molecules against human DDR1 and human DDR2 kinases was
assessed using KinaseProfiler (Eurofins Scientific).

* Cell-culture activity assay

To measure autophosphorylation, the gene encoding human DDR1b with a
hema%?lutinin tag was cloned into pCMV Tet-On vector (Clontech), and stable
inducible cell lines established in U20S were used for the IC50 test. DDR1 expression
was induced for 48h before DDR1 activation by rat tail collagen | (Sigma
11179179001). The cells were detached with trypsinization and transferred to a 15 ml
tube. Then after pretreatment with the compound for 0.5h, the cells were treated
with compounds in the presence of 10ug ml—1 rat tail collagen | for 1.5h at 37 °C.

117
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Experiments

* Cell-culture fibrosis assay

MRC-5 or human hepatic LX-2 cells were grown in reduced serum medium and
treated with compounds for 30minutes. Subsequently, the cells were stimulated with
10ng ml-1 or 4ng ml-1 TGF-B (R&D Systems, 240- B-002) for 48 or 72h. The cells
were lysed in radioimmunoprecipitation assay buffer and cell lysate of each sample
was loaded onto a Wes automated western blot system (ProteinSimple, a Bio-Techne
brand).

» Cytochrome inhibition

* Microsomal stability

* Pharmacokinetic studies

» Statistics and reproducibility

118

Example for
Exploring
Compound Space
and
Target Gene Space

(3 different approaches are reviewed)
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DeepConv-DTI
Prediction of drug-target interactions via
deep learning with convolution on
protein sequences

Ingoo Lee ,Jongsoo Keum ,Hojung Nam
PLoS Computational Biology, 2019

DeepConvDTI

Prediction of drug-target interaction via deep learning with convolution on protein sequences

hd Framework E - Known DTls + randomly generated negative DTls H
* CNN: : u DTI database :
. . : - DrugBank # of compounds  : 11,950 ;
 protein encoding : ~ -KEGG #ofproteins  : 3,675 :
« capture local residue patterns : ~ - IUPHAR #of positive DTls : 32,568
« globally max pooling : Training Dataset Generation :
« FC layer ; @
. dr‘ug encoding Fingerprints : Hyperparameter
: Optimization H
. |nput- T PV - Lodolifef - JoJo]ilt I i Using Validation Dataset :

H on and Full ed | N H
+ Protein: sequence § \goBaragybooing layer \ emeesties 5: - Procicted negative DTI
+ Drug: Morgan(Circular) fingerprints : [ [TTITT] <:| g :

. 0utput ; Fully connected layer ¥ =

* Interaction P"Obab'“ty E I I I I I I I I I I I I EE #of compounds @ 499 E

: \ / / 11 #of proteins © 538

* Hyper parameters Deep Neural Network Model \V/ #of positive DTls 370
' 4 Output score 1 #ofnegative DTIs: 507 |

Protein input: 2500 : Construction H i

» Drug input: 2048 I &

+ protein layer size: 128 ! e b N #of compounds 21,907 |

oA . ctive binding assays + Inactive other assays  # of proteins . 698

: drUg Iayer SIZe'. 128 - PubChem Bioassay # of positive DTls : 18,228 E

*« CNN window size: 5,10,15,20,25 - KinaseSARfari # of negative DTIs: 18,228 |
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Data for DeepConvDTI

Source: DrugBank, KEGG, IUPHAR, MATADOR, PubChem, CHEMBL

# of DTls # of compounds # of proteins

Union DrugBank, KEGG, IUPHAR
32,568 positive
Training 65,136 negative 11,950 3,657

) ) MATADOR: 370 positive
Validation Liu et al. : 507 negative 499 538

PubChem Bioassays:
18,228 positive + 18,228 negative

Test CHEMBL KinaseSARfari . PubChem: 21,907 PubChe: 698
R [PESIIVE < =AY MSERURES KinaseSARfari: 3,379 KinaseSARfari: 389

DeepConvDTI

Data:
Source: DrugBank, KEGG, IUPHAR, MATADOR, PubChem, CHEMBL
# of DTls # of compound # of proteins
S
Union DrugBank, KEGG, IUPH
- AR
Training 32,568 politive 11,950 3,657
65,136 Negative
- - MATADOR: 370 positive
Validation Liu et al. : 507 negative 499 238
PubChem Bioassays:
18,228 positive + 18,228 negati b\ e 21,907 PubChem: 698
Test ve

CHEMBL KinaseSARfari: KinaseSARfari: 3,379 KinaseSARfari: 389

3,835 positive + 5,520 negative X . .
Direct and indirect interactions between protein and chemical
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DeepConvDTI

Data:
Source: DrugBank, KEGG, IUPHAR, MATADOR, PubChem, CHEMBL
# of DTls # of compound # of proteins
S
Union DrugBank, KEGG, IUPH
- AR
Training 32,568 positive 11,950 3,657
2gative
Validation MATADOR: 370 positive 499 538

Liu et al. : 507 negative
PubChem Bioassays:

18,228 pesitives B, 228inedais ip b epe 5 1 667 | \PubGhem: 698

Test ve ; ! ; ,
CHEMBL KinaseSARfari- KinaseSARfari: 3,379 KinaseSARfari: 389

Highly negative credible samples Improving compound-protein interaction
prediction by building up highly credible
negative samples

Hui Liu™?", Jianjiang Sun®*, Jihong Guan®, Jie Zheng? and
Shuigeng Zhou**

A Training dataset
DeepConvDTIl .- =
i 40
Data: o
* Protein classes distribution oL m. .M:M.. - .,c =
B Validation dataset

332

59
£ 35
13
ol
Kinase Protease lon channel  Nuclear receptor GPCR ETC
C Independent test dataset (PubChem)
80
g 60 375
40
193
20
- 83
41 22
)
Kinase Protease lon channel ~ Nuclear receptor  GPCR €Tc
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DeepConvDTI
keys
laokup table

 Xowier inttialees
in keros )

>3

Ak KR MA - (2500)

se q uenCe
Embeddding

mapriX

(zsnp X20)

777

227

(2500 -wintl ) x>y * 5

tonvolTion

moxpoolin xng) > 5

protemn Jeature

Vaoted X (128%x35)

[TITTT1T]

1 x 128

10“"‘1 wohnected luyen‘ EEEE

Protein module O

Convolution Layers

Window size 5

Window size 10 Window size 5*n

bual rerod e

—
Embedding size (20)

# of filters(128) x # of windows(5)
Global max-pooling Layer

Drug module
hwlewle 61;:»03,
ROKit
morga (civoular) fmoerprints
C1x 2048)

+ully connected lm/&r
(1% 128)

toneat (% 256)

Binary classification

DeepConvDTI

Performance:
« Comparison with other models

» Multi-scale Features Deep Representation (MFDR) (based on SAE)

* DeepDTI (based on DBN)
* DeepDTA (based on CNN)

+ 18,228 positive + 18,228 negative; 21,907 compounds, 698 proteins

All proteins and compounds

100 CIDeepConv-DTI (Proposed) EDeepDTI (2017, 10
EMFDR (2016) EDeepDTA (2018)
80 rog
8
c 60 r0.6
©
£
g
S 40 ro4
20 F0.2
0 L 0.0

Spe

Pre Acc F1
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Compound-protein interaction prediction
with end-to-end learning of neural
networks for graphs and sequences

Masashi Tsubaki, Kentaro Tomii, Jun Sese
Bioinformatics, 2018

Tsubaki et al.

Data

Source: Liu et al. (from DrugBank, MATADOR), DUD-E

# of DTls

Training
Human: 3,369 positive
C.elegans: 4,000 positive
positive : negative = 1:1, 1:3,
Validation 15
DUD-E: DTIs for 102 targets
Test

For Human, C.elegans:

80% of the dataset

For DUD-E:

DTls for 72 targets
(22,886 active + 22886
decoy)

10% of the dataset

For Human, C.elegans:

10% of the dataset

For DUD-E:
DTls for 30 targets

# of compoun # of protei

ds ns
Human: 1,052 2:‘:;:;252
C.elegans: 1,434 2504
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Tsubaki et al.

Data

Source: Liu et al. (from DrugBank, MATADOR), DUD-E

# of compoun # of protei

# of DTls ds ns

For Human, C.elegans:
80% of the dataset

T For DUD-E:

aining DTls for 72 targets
o (22,886 active + 22886
69 positive decoy)

ative = 1:1,
Bioinformatics, 31, 2015, i221-i229
doi: 10.1093/bioinformatics/btv256
ISMB/ECCB 2015 OXFORD

DUD-E: DTlIs forN02 tar¢

o positive : ne
Validatio 1:5

n

Improving compound-protein interaction
Test prediction by building up highly credible
negative samples

Hui Liu"2", Jianjiang Sun®", Jihong Guan*, Jie Zheng? and
Shuigeng Zhou™*

Tsubaki et al.

Data

Source: Liu et al. (from DrugBank, MATADOR), DUD-E

# of DTls jsof compoun :stf protei

For Human, C.elegans:
80% of the dataset

R For DUD-E:
Training DTls for 72 targets
- (22,886 active + 22886
Human: 3,369 positive deed Miscellaneous, 5
C.elegans: 4,000 positive Nuclear Kinase, 26 X
— |p05|t|ve Thegative = 1:11 13, Receproril rese u:nan.nS‘SZ
Validatio Lis 10% elegans:
n GPCR, 5 504

DUD-E: DTls for targets . lon Channel, 2.7
o
10%
Test

For |
DTls

Protease, 15

Other Enzymes, ;
36 Cytochrome

P450, 2
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Tsubaki et al.

Compound-protein interaction prediction with end-to-end learning of neural ne

tworks for graphs and sequences

« Framework:
*+ GNN
* Encode compound graph
+ CNN
» Encode protein sequence
+ Attention mechanism

Predict the interaction

1

CIE]

e

Compou_nd @ Protein
+ Capture interaction site embedding =5 (98 empediing
; Attention Caohed
* Input: - sum
+ Protein: sequence -—|;:;';:;‘;:,:.':'g,"“ "’"'“" m
+ Compound: G = (V, E)
. GNN CNN
L]
Output. w6 @9 - - - (o8]
* GNN Hidden vectors of subgraphs Hidden vectors of subsequences
subgraph vector representation
« CNN |Graph neural network | |Convolutional neural network|

residue vector representation
* Interaction probability

C1CCC(CCI)NCCCS(=0)=0)0

MAAVRMLRT + + + MLLDLK

Tsubaki et al.

For molecule embedding
1)  Consider the use of r-radius subgraph

= {1)]' ‘ Jje '/V(i:r)}v
&7 = {emn € & | (myn) € A (iyr) x A (iyr — 1)}

2) For each subgraph: update the vertex
and edge vectors

<»+1),J(vu Y h‘”)
eferl = ( <)+g£]))

3) Represent subgraph with summation of
the hidden vectors of each vertices

4)  Represent molecule with summation of
the hidden vectors of each subgraphs

= v

¥ molecule

Sec 3.1: Embeddings based on r-radlus subgraphs o ®
U

P |

Eas. (D and @) D}I'\,J .E/‘u &7
? f

r 3]

O Vertex

— Edge
j

© Scalar

[@@] vector
2
=3 [ce]
X3 Neural network
# of updates e.g., f(x) = ReLUWx+b)
% H (e+1)

=9+ }(XW)
04 : T]

Neighboring atom

-th atom
vector

_ (L)<= Last layer
y = E X

Molecular
vector

\\\//\\\

P

(e0]

Hidden vectors of subgraphs

Graph neural network

C1CCC(CCLNCCCS(=0)=0)0

-66-




Tsubaki et al.

For protein embedding
1)  Consider each 3-gram amino acids as a w

nrd

[x1;X9;X3], [Xo; X35 X4], .. -, [x‘,.,—q,2;x|y|,1;x|y‘]
2) £ T ' T 7@Mm amino acids: e
) Xiisw1 = C) € R MAA ARV DLK

Cgl) _ f(WconvCEO) +bconv) ‘E_i vt

Hidden vectors of subsequences

MAVVRML +

/ I L L Convolutional neural network
sequence x x 650 I
of wovols 7
wam l (@0] \[@8] (@8] [@0] @8] - - - - - [@0] (@0 [#9)
MAA -~ AAV AVR VRM RML LLD LDL DLK
hadden vedors T
o-f subéeqnente

MAAVRMLRT - - - MLLDLK

Tsubaki et al.

For capturing interaction sites (attention
mechanism)
1)  Compute the dot product values as weights:
For n hygecute = f(Winter Ymolecute + Dinter)

For res h; = f(Winierei + binger)

Predict the interaction
Protein

CIED
/('Ionca:\
@ @l embedding

E sul
] tor: | [ ]>e(00] eCa) - - - elce)

g T
Calcula Qi =0 (hmoleculs hz) S;T:g;::

2)  Calcule —
) ¢ ypmtein - Zi:l aihi' T | | |
Hidden vectors of subgraphs Hidden vectors of subsequences
A
[c ional neural network|
I
C1CCC(CCLNCCCS(=0)X=0)0 MAAVRMLRT - - « MLLDLK
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Miscellaneous, 5

Nuclear
Tsubaki et al -
subaki et al. o
lon Channel, 2 -~
Performance:
Other Enzymes,
36 Cytochrome
P4s0, 2
10 -

09 —

9]

3 QB oo
) . i B
06 -

Vina Smina

AtomNet 3D-CNN Ours

DUD-E

Tsubaki et al.

Explanation of attention module:

* visualization of CPIs with attention weights.
« Green: drug compounds
* Red: high weighted residue

* The neural attention mechanism can indicate
important regions in a protein for interactions
between a drug compound and a protein by
highlighting high-value attention weights.
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Graph Convolutional Neural Networks
for Predicting Drug-Target Interactions

Wen Torng and Russ B. Altman

Department of Bioengineering, Stanford University, Stanford, California 94305, United States
Department of Genetics, Stanford University, Stanford, California 94305, United States

Yijingxiu Lu

Beforehand

* Protein pocket:
» An important, ambiguous feature of protein surface that determine
what interactions are possible with ligands and other macromolecules.

| £ Protein pocket

Druggable ?

3 =
o3
L Drug-likes
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Summary
* Task:

* Learn fixed-size representations of protein pockets
* predict protein-ligand interactions

* Framework:

» Graph Auto-encoder(AE): Trained on a representative druggable pocket set to lear
n general pocket features

« Graph-CNN: Trained to extract features from the pocket graphs and 2D ligand gra
phs
+ Datasets:

« For training AE: 965 pockets ( Druggable pocket sets + DUD-E (Database of Useful
Decoys-Enhanced))

* For training Graph-CNN: DUD-E data set
* For validating Graph-CNN:
+ 4-fold validation model: DUD-E data set
« Full data set model: maximum unbiased validation (MUV) data set

Step | - Unsupervised
Pocket Graph Autoencoder
Latent Pocket Space

Step Il - Supervised
Graph Convolutional Binding Classifier

Framework

* Left: Step | - Graph Auto-enco
der to generate general pocke
t features

 Right: Step Il - Graph CNN to
predict binding label of a pair

0 SPAN
. ?g%

BINDING CLASSIFIER

INTERACTION LAYER

of drug-target (= == omom
* In the Graph-CNN framework, T = :
nsupervised Finetuned
Pocket GCN and Molecule G PROTEINPOCKET | .~ - | PROTEINPOCKET SMALL MOLECULE
CN are constructed to extract REPRESENTATION Weightlnitizlization REPRESENTATION REPRESENTATION
features from pocket graph a DEEP GRAPH - DEEP GRAPH DEEP GRAPH
nd molecule graph separately. AUTOENCODER CONVOLUTION

» Pocket GCN is initialized with
learnt weights from Step |

A

Protein pocket graph

CONVOLUTION

Protein pocket graph 2D molecular graph

O NH,

Ao 00
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A Database of Usefiul Decoys. Enhanced

Subsets

Generate Other

EAQ ‘ Revisions | Thanks

welcome to DUDSE, an ehhanced and rebuilt version of DUD, a directory of useful decoys. alVsg SyERs [ Ta]yt=Te |y ol g1 (sl o Ty To Ty =10 el eV BT
king pro provi decoys. It contains:

P2 886 active compounds and their affinities against 102 targets, an average of 224 ligands per target
LI50 decoys for each active having similar physico-chemical properties but dissimilar 2-D topg

D U D - E mol2 and SDF format now available in all packages for actives and decoys. [July 14]

DUD-E is provided by the Shoichet Laboratory in the Department of Pharmaceutical Chemistry at the University of California, San Francisco
(UCSE). To cite DUD-E, please reference Mysinger MM, Carchia M, Irwin 71, Shoichet BK J. Med. Chem., 2012, Jul 5. doi
10.1021/jm300687e .

We thank NIGMS for financial support (GM71896 to BKS and 1JI). For correspendence about DUD-E, please write John Irwin jji at cgl dot ucsf
dot edu.

DUD-E may be downloaded target-by-target, organized by subset such as GPCR and kinase, or all at once. You may also generate your own
decoys.

DUD-E is a research tool which we have tried to make as useful and as correct as we know how. Anticipating that problems will undoubtedly be
found, we hawve set up a DUDE wiki page and a DUDE Facebook page to allow the community to share problems or observations. We will
endeavor to put right any preblems promptly, as best we can.

Browse Download Make Decoys

the DUD=E targets the default DUD-E package for your own ligands

» Contains 22,886 active compounds and their affinities against 102 targets
* An enhanced and rebuilt version of DUD
« DUD: Directory of Useful Decoys
» Decoy: a compound that has similar physical properties but dissimilar topology with an active
compound against a target
« On average, each target has 224 actives (positive examples) and over 10,000 decoys (negative exa
mples)

http.//dude.docking.org,

Maximum Unbiased Validation (MUV) data set

* Benchmark data sets that designed using “refined nearest neigh
bor” analysis for virtual screening based on PubChem bioactivity
data

 Contains a collection of datasets of actives and corresponding
decoy datasets

« Unbiased with regard to both analogue bias and artificial enrich
ment

« 17 active classes, 93,087 molecules

-71-




Input Featurization & Preprocessing

* Protein pockets:

» Represent each protein pocket as a graph of key residues

* For each PDB co-crystal structure, identify the pocket residues by retrie
ving residues that have any atom within 6 A of the bound ligand

* Node -> pocket residue

* Node attribute -> local amino acid microenvironment that described as fix
ed-size vectors generated using FEATURE program

» Edge -> Distance between nodes

* Small molecules:
» RDKit package
* Node -> atom
» Edge -> bond

Step I: Auto-encoder

a. Autoencoder |
Compress local graph neighborhood information

T Layer 0’

Viesidue L0 480H @

T
wseILL1

LB :
Wdegz,u j“

Decoder

Layer 1 ﬂ

Viresidue L1 ZOOH @\C
GLY
- w ih

Encoder

Pocket Graph
Node attributes: FEATURE Vectors

b. Autoencoder Il
Encode residue embedding into residue fingerprint

Encoder Decoder

J\ ")\ - T r
I 200 PP, 1y = Softmax(We, | Ve 11+ Brp ;)

c. Fixed-Size Pocket Fingerprint

FPpoc_L1
Average
FPGLU_ L1 FPHis 11 FPTHR L1
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Step Il: Graph-CNN

» Comprises
* (1) Molecule graph convolution module
« 2 GCN layers with 200, 100 filters
+ Learn molecular fingerprints of length 216
* (2) Pocket graph convolution module
+ 2 GCN layers with 200, 100 filters
 Learn pocket fingerprints of length 512

» Has the same architecture of the “Encoder |
and “Encoder II" in Step |

* (3) Interaction module
* (4) Softmax classifier

"

+ Adapting the “graph convolution operations” pr
oposed by Duvenaud et al. to generalize the Gr
aph-CNN framework onto graphs, and learn fix
ed-size molecular fingerprints

Binding Prediction

and Flngérpnnt

216 [T

Softmax Classifier

) Q Interaction Layer

“Pocket Fingerprint-::.

Average of FP_,_ Average of FP_ ., o
Atom Node Fingerprint (FPmm) Residue Node Fingerprint (FP ., )
D T D ) e | = =} [ mm = = ) [ om = =)
% [== = ol === BN == =ziis == | l:sé%:l [ = = = ) [ = m=m ] [ o= = = )
Ligand FP Output Layer Pocket FP Output Layer
FP o = SOftmax(Wy, v o+ bung) PP, ige = SOftmax(W, v, b, )
g

(Ligand Graph Convolution
Layer 2

Vatom L2 moﬂ

wlig,seu,u

Layer 1 lig_deg2 L2/

Vatom L1 200

=

Ligand Graph

Vatom 1o 62 I

0

Node attributes: Atom descriptors
Edge features: Bond descriptors

,Pocket Graph Convolution

Layer 2 H

Viesidue L2 100 |]

W seit 12

poc_deg2 12/

Layer 1

Vresidue L1 200 u :

Pocket Graph

Viresidue_Lo 480 |]

Node attributes: FEATURE Vectors

Evaluation & Results

2D, 3D t-SNE visualization of fixed-size
pocket fingerprints learned by Graph-AE
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Example for
Exploring
Compound Space
and
Genetic Space

e —

nature
COMMUNICATIONS

De novo generation of hit-like molecules
from gene expression signatures using
artificial intelligence

Oscar Méndez-Lucio1,2*, Benoit Baillif 1, Djork-Arné Clevert3, David Rouquié1,5* & Joerg Wichard4,5*

1 Bayer SAS, Bayer Crop Science, 355 rue Dostoievski, CS 90153, 06906 Valbonne, Sophia Antipolis Cedex, France.
2 Bloomoon, 13 Avenue Albert Einstein, 69100 Villeurbanne, France.

3 Department of Machine Learning Research, Bayer AG, 13353 Berlin, Germany.

4 Department of Genetic Toxicology, Bayer AG, 13353 Berlin, Germany.

5 These authors jointly supervised this work: David Rouquié, Joerg Wichard.
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Introduction

« Connecting chemistry and biology through gene expression
without the need of previous activity labels.

 Conditioning a GAN with transcriptomic data

Octceeent CC1=CC(Br)CCC1 HO_ ~

HO
o
CCC(C)=0 clceeeet l-«)7 J M "O\HJ@\N‘N ™ u
CC(O)CC#N  clceent o | i <] S e
o o
Encoder Decoder Decoder
Go G,

Latent

Model

Gaussian
% f, X2 i \{L
e oo\ SN
Decoder %! s Do S ! D,
£E -
88  Does it matches Isita 35  Does it matches Isita
SMILES 4 ] the condition?  molecule? 25  thecondition? molecule?
Ocicccent  CC1=CC(Br)CCCH (] | J 8
CCC(C)=0 ciceceet
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Datasets

« L1000 from GEO
* LINCS: phase 1 (GSE92742), phase 2 (GSE70138)

« Landmark genes coming from perturbagens tested at 5 or 10
UM either on MCF7 or VCAP cell lines after 24 h of exposure.

* 19,768 compounds and 31,821 gene expression signatures.

Experiments 3

Conditioned GAN focus on specific areas of the chemical space.

a

E oded scaffold Opt imized scaffold o
@ ©;o\)1\
c1ceeect CC(=0)COCc1cccee 1C \"/\
Encof TP53 mhlbllor

/
N
Y, ,'” o)

o |\{H ; HO

EGFR inhibitor |

LTI R
Gene expression

Cl 2 oH

O “NH
EGFR inhibitor ERG inhibitor
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Result

Classification score
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Example for
Exploring
Compound Space
and
Genetic Space

DRIM: A web-based system for investigating
drug response at the molecular level by
condition-specific multi-omics data integration

Minsik Oh, Sungjoon Park, Sangseon Lee, Dohoon
Lee, Sangsoo Lim, Dabin Jeong, Kyuri Jo, Inuk Jung,
and Sun Kim

Frontiers in Genetics, 2020

Bio & Health Informatics Lab

-78-




Introduction

* Pharmacogenomics is the study of how genes affect a person’s
response to drugs.

* The variability in drug responses among cells is a major challenge in
cancer drug therapy, thus personalized drug response research is much
needed.

 With the recent advances in instrument technologies, drug response
analysis at the molecular level has become possible.

* Multi-omics data before drug treatment with drug response (IC50 or
AUC) : GDSC [1], CCLE [2], NCI-60 [3]

» Time-series gene expression data after drug treatment : NCI TPW [4],
NCI-DREAM [5]

» We have an opportunity to investigate relationship between drug
response phenotypes and cqrresponding molecular data. .

ormati

Introduction
Drug response at the molecular level '/:/'
need to be done by ¢

A Regulatory TF
O Multi-omics mediator
O Gene

« Pathway-level analysis
» Drug responses can be better explained at the biological pathway level,
rather than at the gene level.

* Multi-omics level analysis
» Integrative analysis of multi-omics data can help understand cell line-
specific gene regulation mechanisms for pathway activation and it can be
used as a signature for drug response sub-pathway identification

Bio & Health Informatics Lab 160
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DRIM

Step 1. Time-series drug response data
a’//\ Step 3. Multi-omic profile of cell line kfl
= o _ e workflow
to t1 t2 t3 = =

Step 2. . Multi - beddi

L) L) &) 1Cso
D -+
T KA FT . 8 EE SI-F
sbpathasy ® 2 2® 2@ 2 & e &
« © - N I |
- Literature mining
Multi-omics R, = R [
mediator / / /
L _J @ @
Perturbed T 1 T 1 1k 1
subpathway @ @ L 4 @ (g @
t 2 s
Step 4. . Dgg » Multi-omics mediators
Regulatory TE a PN V'S for drug sensitivity
T r— -./_)- -/_)- -/_)- KEGG pathway Pathway enrichment
mediator ¥ =
i
L L - i
@ C J [ J C J D @
Perturbed 1 1 il 1 1 1
subpathway (4 @ @ @ @ ® » Perturbed sub-pathway over time
t1 t2 i3 actr -
. Step 5-- T I. .3
Bio & Health Informatics Lab 161
(A) Tensor-decomposition embedding (B) Auto-encoder embedding . . .
[JeeNe[ mEeT [ JmuT [ Jcnv MU|tI-OmICS embeddlng
P v s  — | n— , ,
S e I | | | } sweaic * DRIM integrates four multi-
2 1 - encoder )
3 E= i - omis omics data before drug
B encoder .
Genes— omics treatment as gene-centric
integration
e . B . Eeatures decoder vector from CCLE database.
R 2 s
B i X = cs
: B _—— } T
¢ C C. I l .
¢ ‘ ? + IC50 related features selection
(C) ICs, related feature selection with Lasso . .
. Features ICao Foatures with Lasso regression
Ess z E
= _ = _— =
S J

Lasso regression

Feature selection

Gene selection related to

Selected Features

associated features.

C T T 0 ]

(D) Gene selection in Tensor-decomposition

Features

Genes

3

(E) Gene selection in auto-encoder

Selected Genes

BIO & Healtn InTormatics Lao

— Using (Gene x Features)
matrix

— Activation and propagation
from selected features to
the omics data later in the
decoder.

162
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Multi-omics data analysis result on the web

(A) Multi-omics analysis table

Cell line IC50 value @

Cell line IC50
BT549_BREAST 2.01
T47D_BREAST 29
MCF7_BREAST 3.03
MDAMB468_BREAST 3.76
MDAMB231_BREAST 6.5

Cell-line

Multi-omics potential mediator genes @

Gene Score

ERBB3 8.008

VEGFA 6.113

PGR 5.960

CDAN1 5.988

ABCG2 5.827

Mediator gene
Perturbed pathway @
Perturbed pathway P-value
P53 signaling pathway 0.005
Amino sugar and nucleotide sugar 0011
metabolism

T cell receptor signaling pathway 0.022
0.025

Chronic myeloid leukemia

Perturbed pathway

(B) KEGG-pathway plot

(C) Multi-omics potential mediator enrichment plot

* DRIM provides multi-omics
data analysis tables (Figure A)

* Cell line IC50 value

» Multi-omics potential
mediator genes

* Perturbed pathway list
with P-value

+ KEGG-pathway plot for
perturbed pathway (Figure B)

MAPK signaling pathway
Shigelosis
Celuiar senescence
Hepatocellar carcinoma.
Fluid shear siress and atherosclerosis
mTOR signaiing pathway
Breast cancer
HIF-1 signaling pathway
‘Sphingolipid signaling pathway
TNF signaling patrway
T cell receptor signaiing patrway
P53 signaling patrway |
IPD-L1 expression and PD-1 checkpoint pathway in cancer
Pancreatic cancer
Chronic myeloid leukernia |
EGFRtyrosine kinase infibitor resistance
Amino sugar and nucleotide sugar metabolism
VEGF signaling pathway
Anifolate resistance | @
Phenylalanine metabolism |

* Multi-omics potential
mediator pathway enrichment
plot (Figure C)

00050

00075

163

004
GeneRatio

Time-series gene expression data analysis result

(A) Cell line & sub-pathway selector
Configure @
Cellline: MDA-MB-231

Subpathway: EGFR tyrosine ki ~

(B) Perturbed sub-pathways of cell line
Perturbed sub-pathway @

Perturbed sub-
pathway P-value
Hepatitis B 0
EGFR tyrosine kinase 0
inhibitor...
ErbB signaling 0
pathway
PPAR signaling 0
pathway
Inflammatory 0 "

Perturbed sub-pathway

(C) Perturbed sub-pathway network

BPTF Fos

PIK8CA

i

FOXO1 PTRNE ZBTB6

F

PDGFRE 2 ERBB2

IL6R

Time

3 1)

2

Under- not Over-
expressed DE expressed

OTF

) Multi-omics mediator

O Genes in perturbed sub-pathways

Perturbed sub-pathway of each cell line.

Bio & Health Informatics Lab

Time series gene expression after drug treatment

7.8
S 76 o I control
w ” ~
874 I treat
S 72
o
& 70

6.8

2h 6h 24h
Time Point

(D) Multi-omics data and time series gene
expression data plot

= Multi-omics data before drug treatment
% 04
- GENE-EXP
8
E 03 MET
= 02 MUT
E
2 01 Chv
)
=
E 0
z PIK3CA
Multi omics of gene
164
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Personalized perturbed sub-pathway analysis

=P Activation == Inhibition 1F (O Multi-omics mediator () Gene

(B)
eC— N D
ETV7> TRAF5 CEBPA RUNX1 RUNX1 DUSP8
MAPK10 MAPK10
PTPN6 MAPKS ;uu
FOS 0 o NFKB1
BT-549 T7-47D _,o 0
STAT2
©) N ‘ \ BCL2L1 /’cnlz

vze FA
nu~x1l rcm.zl

= N MDA-MB-231  CCND3 T-47D
AHR ARNT ‘ i
MDA-MB-468 CEBPA PTPNiI PDGFRB O o
SHC1

INSR

L

STAT2 5OCSs1

MDA-MB-231 MCF7 BACH1

Bio & Health Informatics Lab 165

Drug Discovery and Cells

-82-




NATURE REVIEWS | DRUG DISCOVERY
VOLUME 18 | JANUARY 2019

Drug repurposing: progress,
challenges and recommendations

Sudeep Pushpakom’, Francesco lorio?, Patrick A. Eyers?, K. Jane Escott?,
Shirley Hopper®, Andrew Wellsé, Andrew Doig’, Tim Guilliams®, Joanna Latimer®,
Christine McNamee', Alan Norris', Philippe Sanseau'®, David Cavalla'

and Munir Pirmohamed'*

Abstract | Given the high attrition rates, substantial costs and slow pace of new drug discovery
and development, repurposing of ‘old’ drugs to treat both common and rare diseases is
increasingly becoming an attractive proposition because it involves the use of de-risked
compounds, with potentially lower overall development costs and shorter development
timelines. Various data-driven and experimental approaches have been suggested for the
identification of repurposable drug candidates; however, there are also major technological and
regulatory challenges that need to be addressed. In this Review, we present approaches used for
drug repurposing (also known as drug repositioning), discuss the challenges faced by the
repurposing community and recommend innovative ways by which these challenges could be
addressed to help realize the full potential of drug repurposing.

CONNECTIVITY MAP (CMAP)

HTTPS://WWW.BROADINSTITUTE.ORG/CONNECTIVITY-MAP-CMAP

 To date, CMap has generated a library containing over 1.5M
gene expression profiles from ~5,000 small-molecule
compounds, and ~3,000 genetic reagents, tested in multiple
cell types. To produce data of that scale, we've developed
L1000, a relatively inexpensive and rapid high-throughput gene
expression profiling technology. Expression data are processed
through a computational pipeline that converts raw
fluorescence intensity into signatures, which can be used to
query the CMap database for perturbations that give a related
gene expression response.

« Funding for our work comes from the NIH LINCS (Library of
Integrated Cellular Signatures) project
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The LINCS Consortium

* By generating and making public data that indicates
how cells respond to various ?enetic and
environmental stressors, the LINCS project will help us
gain a more detailed understanding of cell pathways
and aid efforts to develop therapies that might
restore perturbed pathways and networks to their
normal states. The LINCS website is a source of
information for the research community and general
public about the LINCS project. This website along
with the LINCS Data Portal contains details about the
assays, cell types, and perturbagens that are currently
part of the library, as well as links to participating sites,
data releases from the sites, and software that can be
used for analyzing the data.

Featured Interactive Data Visualization

LINCS Joint Project (LJP)
Breast Cancer Network Browser (BCNB)

v v (]
¢+ ¢ 4
Cell line Drug class
n A d
® MDAMB231 ® MEK/ERK
+ MCF10A MAPK A
¢ wmcF? mTOR A* A
PI3K A
®  SKBR3 ® Cellcycle A
V¥ Hss78T others \A A
A BT20 ® chaperone N
SRC family
GRval ® ErbB A - .
value ECM A .t
. ° ® RTK NVP-AEW541
. DNA repair BLJP0O05_SKBR3_24H:BRD-
o7 ez AKT K20896416:10 N =
n
n

In a recent study published in Nature Communications, the HMS LINCS Center, in
collaboration with the LINCS Transcriptomics Center and the BD2K-LINCS DCIC,
analyzed the gene expression and phenotypic response of six breast cancer cell lines to
over a hundred drugs and pre-clinical small molecules. The perturbations were applied in
different concentrations while gene expression was measured at different time points
using the L1000 technology. Under the same conditions, the cells were imaged for cell
viability. The LINCS Joint Project-Breast Cancer Network Browser (LJP-BCNB) is an

||||||||||||||||||| limatinm Af D24 rimmatiivac rrnaknd fram thic Aatracae
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L? LINCS Data Portal & Download

Try out LINCS Data Portal 2.0 Beta

@ @ Y

41847 Small 127 Cells 978 Genes 117 Antibodies
Molecules

108 Datasets NOMEscan kinase-small molecule

(A Methods
= iNati bindin
m Subject Areas KiNativ 30 Datasets |
Centers MEMA 25 Datasets
f ELISA 5 Datasets
m Projects
L 7D
Biological Processes 000 atasets
P100 7 Datasets

Assay Overview

Drug-disease similarity approach to
identify topiramate in IBD

 Dudley and colleagues compared the gene expression signature
of inflammatory bowel disease (IBD) derived from publicly
available data obtained from the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus
with the gene expression profile of 164 drugs obtained from the
Connectivity Map (cMap).

* Therapeutic predictions for drug—disease pairs were derived

based on the extent of negative correlation between the gene
expression signature of the drug and that of the disease.
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Drug-drug similarity approach to identify the potential use of
fasudil in amyotrophic lateral sclerosis

* lorio and colleagues used the ‘guilt by association’ principle to
construct a drug network using publicly available transcriptomic
profiles of drugs, which allowed them to identify drugs with a similar
tr{gnsc_riptional signature and therefore a perceived similar mechanism
of action.

» Using gene expression profiles of each drug across multiple
treatments on different cell lines and/or at different dosages obtained
from the Connectivity Map (cMap), they computed a representative
transcriptional response for each drug.

* A drug network was then constructed in which two drugs were
connected to each other if their optimal transcriptional responses
were similar according to a similarity measure developed by the
authors (called drug distance).

Use of GWAS-identified targets for potential
repurposing of denosumab in Crohn’s disease

» This prompted Sanseau and colleagues to speculate about a
potential role for denosumab in Crohn’s disease.

 Using human B-lymphoblastoid cells and osteoblasts, they
found that the Crohn's disease-associated 7NFSFT77 variant was
associated with the differential expression of 7TNFSF77 and was
able to explain population variation in 7NFSFT7 expression in
both cell types representing distinct cellular lineages relevant for
both inflammatory and bone disease.
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The challenges of big data

« Advances in technology such as next-generation sequencing and
continuously reducing costs mean that researchers can generate
large quantities of experimental data; these include data
generated by high-throughput DNA and RNA sequencing, mass
spectrometry, metabolomics and transcriptomic data,
phenotyping and many more. Added to this are large amounts
of clinical data that are increasingly becoming available from
electronic health records (EHRSs), clinical trials and biobanks.
Such data are often referred to as big data — data sets that are
so large or complex that traditional data processing methods
are inadequate

Cancer Cell

¢? CelPress Cancer Cell

Predicting Drug Response and Synergy
Using a Deep Learning Model of Human Cancer Cells

Brent M. Kuenzi,'-* Jisoo Park,’-> Samson H. Fong,'-? Kyle S. Sanchez,’ John Lee,’ Jason F. Kreisberg,' Jianzhu Ma,*
and Trey Ideker’:%35*

'Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA

2Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA

3Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA

“Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
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6Lead Contact

*Correspondence: tideker@ucsd.edu

https://doi.org/10.1016/j.ccell.2020.09.014

-87-




P
/ wr N )

‘ = S g 5 l\\{}(jljl -

Cancer mutaticns Drug chemcal struciure
Conventicosal
machene
leaming

N/

Praciction o cancer drug response

AL
j *
Il

Cancer patients

Coll vty ')

Concertrason

Cancer cell ines

Idantity synergistic dnsg combinations

BN
o\g g

Visible Layers (with Gene Ontology)

Genomics of Drug Sensitivity in Cancer database (GDSC)
Cancer Therapeutics Response Portal v2 (CTRP)

Binary mutations

A
Drug

Genotype
1

Embedding
of chemical
structure

ANN

In silico
treatment of
cell with drug

L ¥

Response of cell to drug

DrugCell

mm"\/m\/f\"\&\_\/ 6 neurons / subsystem
i —

Genotype embedding

Chemical

b
H ﬁw structure

2,086 subsystems

Drug structure embedding

-88-




Defining a Hierarchy of Genes and Cellular Subsystems

* we selected the top 15% most frequently mutated genes in human
cancers accord- ing to the Cancer Cell Line Encyclopedia (CCLE)
among genes annotated to Gene Ontology (GO) terms.

* This procedure yielded 3,008 genes, henceforth called ‘DrugCell
genes’, which were used in model construction. These genes were
or%anized into a hierarchy of nested gene sets, representing cellular
subsystems at different scales, based on terms extracted from the GO
Biological Process hierarchy.

* To further reduce model complexity, we restricted the hierarchy to a
maximal depth of five subsystems by removing all subsystems more
than five parent-child relations above the bottom layer subsystems of
the hierarchy (subsystems without any children).

* The resulting hierarchy, composed of 2,086 subsystems, defined the
branch of DrugCell for embedding of genotype (left branch in Figure
1A, also called the VNN; Figure 1B).
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Mechanisms of Sensitivity Using CRISPR/Cas9

Systematic Validation of Identified
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RESEARCH ARTICLE

DigChem: Identification of disease-gene-
chemical relationships from Medline abstracts

Jeongkyun Kim', Jung-jae Kim?, Hyunju Lee ' *

1 Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science,
Gwangju, Korea, 2 Institute for Infocomm Research, A-STAR, 138632, Singapore

* hyunjulee @gist.ac.kr

Abstract

disease-gene-chemical triplet relationship from Medline abstracts

» There are few studies that extract disease-gene-chemical relation
ships from biomedical literature at a PubMed scale

* Authors proposed a DL model based on Bi-LSTM to identify the
evidence sentences of relationships from Medline abstracts

» Developed a search engine called DigChem

. http://gcance:

r.org/digchem -> but not available right now..
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Keywords

« Disease-Gene-Chemical Triplet Relationship from literature

-— l gene
disease - chemical

« Horizontal(parallel) alignment of sentences

alignment
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Materials & Methods

Gold standard evidence sentences

 Authors assumed two sentences together represent a triplet relationship
* if (three elements appear in the same sentence):

* duplicate the sentence into two identical sentences
« if (@ sentence has multiple mentions of gene and of chemical):

- each pair is extracted to form either positive or negative triplet with di
sease mention

 Authors randomly selected sentence pairs from Medline abstracts, and ma
nually evaluated them as positive or negative(1,000 pairs each)

« Among 2,000 pairs, half of them were from the same sentence
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Materials & Methods

Positive / Negative relationship

Positive Negative
relationship relationship
Name of chemical, | . .
: exist exist
gene, and disease
Relationship direct or indirect |[none

Materials & Methods

Positive / Negative sentence pair example(from article)

« Positive sentence pairs for gene BNP, chemical SUN, and disease renal cell carcinoma
(PMID: 24984876).

« Sentence 1: “At the protein level, Western blot analysis showed that SUN increased BNP
and b-MHC, while it inhibited a-MHC protein levels in a concentration-dependent
manner.”

« Sentence 2: “Sunitinib (SUN) is a multi-targeted tyrosine kinase inhibitor used for the
treatment of gastrointestinal stromal tumors and renal cell carcinoma.”

« Negative sentence pairs for gene ACE, chemical hydralazine, and disease glomerulosclerosis
(PMID: 25143333).

« Sentence 1: “CONCLUSION: The results show following an abrupt decline in podocyte
number, the initiation of ACE-inhibition but not hydralazine, was accompanied by higher
podocyte number in the absence of proliferation.”

« Sentence 2: “OBJECTIVE: The objective of this article is to test the effects of angiotensin-
converting enzyme (ACE)-inhibition on glomerular epithelial cell number in an inducible
experimental model of focal segmental glomerulosclerosis (FSGS).”
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Materials & Methods

Relation classification model

Fully connected layer

Aligning sentences Embedding layer Bi-LSTM layer with softmax output
Entity
Gene-chemical Word type
sentence Disease sentence vector  vector
W, o e Wg, + Null :
bic- o |:i. We, + Null —
Chemical|| By, : ¥ Chemical + Null HERS
W, [0) W, [0) Wg,+ Wd, T .
Gene Biene Disease| | Bicease Gene + disease ] P Os't“_'e
] 0 — || Negative
0 We,+ Wd, |
0 Null +Wd,,; © © 0 i —
Materials & Method
Wo rd embedding ' Aligning sentences ' 'Embedding layer
: Entity
* Used two embedding features Gene-chemical Word  type
sentence Disease sentence vector  vector
* Word representation vectors W, o : We, + Null :
W, o : Weg, + Null|
. . Chemicall| Bepemica : ¥ : i
« applied Word2Vec to Medline data set S a -
Bdisease Gene + di
* vector size: 200 8

» Entity type representation vectors

+ used NER tools and tagged with BIO format
» 7 tags in total(B and I for gene, chemical and disease each, and one O)

e vector size: 20
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Materials & Methods

Post processing

 Before post-processing, the false positive rates were 35.8%

« Authors constructed five rules to filter out false positive sentences

1. filter out when recognized mentions are not contained in synonyms
of entities in dictionaries after the recognized mentions are normali

zed into entity names

2. filter out if any mention is recognized as more than one entity type

3. filter out if it contains hyponyms of ‘study’ (it may express a purpos

e of research)

4. filter out if %ene name and chemical nmae are connected by a conj

unction in the dependency parse tree

Results & Discussion
Statistics of DigChem
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Results & Discussion
Comparison results with CTD & DrugBank
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BioBERT and Its Applications

Slides By Prof. Jaewoo Kang @ Korea University
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BioBERT: a pre-trained biomedical language
representation model for biomedical text mining
w/ Jinhyuk Leet, Wonjin Yoont, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So

[Bioinformatics 2020)

Overview of BioBERT

Pre-training of Bidirectional Transformers

Pre-training corpora Bi-Transformer Pre-training corpora Bi-Transformer
Publifed PubMed o :
(4.5B words) o S 3

2 N
st Wikipedia
.*Lh (2.5B words)

WIKIPEDIA
The Free Eneyelopedia

PMC m )
PM (13.58 words) ) __7_ B

2

gl
4]

+ & BERT

BooksCorpus !t =l
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general domain corpora L biomedical domain corpora
BERT (Devlin et al., 2018) BioBERT (Ours)
Task-specific Fine-tuning
Pre-processing biomedical training data BioBERT Fine-tuning Evaluation
s s Precision)
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Pre-training of BioBERT

Pre-training of Bidirectional Transformers

Pre-training corpora Bi-Transformer Pre-training corpora Bi-Transformer
L Pub'&]ed PubMed S -
ta W wikipedia (458 words) pteagie iy

= (2.58 words) PMC . . .
WikipEDIA PMC %o ]
BooksCorpus - & BERT £ 3 (e
==L Transferred from
(088 words) BERT : pre-trained with ST BERT (Deviin etal) BioBERT : pre-trained with
general domain corpora o] 5 biomedical domain corpora
BERT (Devlin et al., 2018) BioBERT (Ours)

—Pre-trained Bidirectional Transformer on PubMed + PMC (18B words) on top of
BERT (3.3B words) for more than 20 days with 8 V100 (32GB) GPUs.

—Keeps the same architecture throughout the tasks except the last softmax layer

Named Entity Recognition 4 DMIS

* Named entity recognition (NER) is a task of recognizing proper nouns in a corpus.

— In the biomedical domain, detecting domain-specific entity types such as disease,
chemical, gene and protein, is a main objective of the task.

— Polysemious words
.Mmaﬂuns of - the - VHL - gene - in sporadlc- renal - cell | carcinoma | : deﬁnitinn.
o ool o] oo & | 1+ [ 1 ][ 1 [o] o]
of . a risk _facbor_ for VHL _Fatients to _develop_ an RCC |
o o | ol o/ o8 o] o] o] o8 | o]
67
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Named Entity Recognition

* (Bio)BERT for sequence tagging task:
« Utilized the last layer of LM(BioBERT) as a contextualized representation
» Representations are fed into the output layer (1 layer feed-forward neural network)

Output (o] o (o] o o o B | 1 | o o o o
(SN S S SN SRR SR SN SUN SRR SN SN SR S S
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Relation Extraction

* Relation extraction in the biomedical domain is a task of classifying relations of named
entities in a biomedical corpus.

« Binary or multi-class classification task on a sentence using [CLS] token.
« Example:

+ "C1167 polymorphism in the @GENE$ gene and D6S366 near the SOD2 gene are

not associated with the development of @DISEASE$ and diabetic retinopathy in
IDDM. *

-> Output: 0 : @GENE$ and @DISEASES$ are not related

Classification head

Output Tor0
T
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Question Answering

Representations are fed into the output layer (1 layer FFNN; e.g. W € d768*2)
« We utilized multi-level transfer learning strategy : BioBERT -> SQUAD -> BioASQ
Fine-tuning on SQUAD : Understand the structure of Question Answering
Fine-tuning on BioASQ : Enhance the model by target-domain data supervision
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Question Passage
Performance of BioBERT on QA
Table 8. Biomedical question answering test results
BERT BioBERT v1.0 BioBERT v1.1 _ 12 24 M RR
.
Datasets Metrics SOTA (Wiki + Books) (+ PubMed) (+ PMC) (+ PubMed + PMC) (+ PubMed) .
BioASQ 4b S 20.01 27.33 25.47 26.09 28.57 27.95 Improvement on ave rage
L 28.81 44.72 44.72 42.24 47.82 44.10
M 23.52 33.77 33.28 32.42 35.17 34.72
BioASQ 5b S 41.33 39.33 41.33 42.00 44.00 46.00
L 56.67 52.67 55.33 54.67 56.67 60.00 H
M 47.24 44,27 46.73 46.93 49.38 51.64 - AChleveS State'Of'the'a rt
BioASQ 6b S 24.22 33.54 43.48 41.61 40.37 42.86
L 37.89 5155 55.90 55.28 57.77 57.77 of pe rformances on 3 out
M 27.84 40.88 48.11 47.02 47.48 48.43 f 3 d t t
o atasets
Notes: Strict Accuracy (S), Lenient Accuracy (L) and Mean Reciprocal Rank (M) scores on each dataset are reported. The best scores are in bold, and the
second best scores are underlined. The best BioASQ 4b/5b/6b scores were obtained from the BioASQ leaderboard (hetp://participants-area.bioasq.org). ( B i OASQ 4 b 5 b 6 b)
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Selected as one of top-3 best papers

YEARBOOK
oF MEDICAL
INFORMATICS

Table T Best paper selection of artidles for the IMIA Yearbook of Medical Informatics 2020 in the section ‘Natural Language Processing'. The
articles are listed in alphabetical order of the first author's surname.

Section
Natural Language Processing

= Guon I, i R, Yu'S, Zhang X. A Method for Generating Synthetic Electronic Medical Record Text. IEEE/ACM Trans Comput Biol
Biginform 2019.

= [ee ], Yoon W, Kim S, Kim D, Kim S, Ho So C, Kang J. BioBERT: a pre-troined biomedical languoge representation model for
biomedical text mining. Bicinformatics 2019.34(4):1234-40.

= Rosemblat 6, Fiszman M, Shin D, Kihcoglu H. Towards a charadterization of apparent contradictions in the biomedical literature
using contet analysis. | Biomed Inform 2019:98:103275.

203

Wrap-up
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Main Issues

* Representation
* Search space

* Truly inter-disciplinary field including computer science,
chemistry, biology, pharmacology, medicine, animal sciences,

etc.

« We, computer scientists, have a lot to do!

2020 DAY1

+ interns in my lab contributed a lot.
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