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Shrinkage Methods and Tree Ensembles for High-
dimensional Sparse Data
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® Bias-Variance Trade-Off
°
® Shrinkage 2% (Ridge, Lasso, Elastic Net)
°

Tree Ensemble (Bagging, Random Forest, Boosting)
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— An Introduction to Statistical Learning: with Applications in R
(Springer, 2013)

Bias-Variance Trade-Off




A Machine Learning Example:
Advertising Problem

* How to improve sales of a particular product
— By controlling the advertising expenditure
« Data

— Sales of the product in 200 different markets

— Advertising budgets for the product in each of those markets for
three different media: TV, radio, and newspaper

— Develop an accurate model for predicting sales given the three
media budgets

A Statistical Learning Setting

* Input variables
— TV budget (X,), radio budget (X,), and newspaper budget (X,)
— Different names
* Predictors, independent variables, features, and variables
* Qutput variable
— sales (Y)
— Different names
* Response, dependent variable, and target variable
* Our assumption
- Y=1fX)+¢
— f: a function
— €. an error term




Statistical (Machine) Learning

« We try to estimate “f’ from a given (training) data set

« Machine learning is about a set of approaches to
estimating the f

« Diverse disciplines are related to machine learning
— Computer science
— Electronic engineering
— Statistics

Types of Machine Learning

» Supervised learning

— Atarget variable (Y) is given

— Regression vs classification

— Disease diagnosis based on a lab test
* Unsupervised learning

— There is no target variable

— Exploratory data analysis; feature extraction

— Clustering of genes based on their expression patterns
* Reinforcement learning

— Instead of a target variable, reward is given to an agent
— AlphaGo

— Robot navigation (mapping and localization)




Types of Supervised Learning

« Quantitative target-variables
— Numerical values
— Age, height, income, sales
— Regression
+ Advertising problem
« Qualitative target-variables
— Categorical values
— Gender, cancer diagnosis
— Classification

Why Estimate ?

* Prediction

— If we estimated f, we can use it for predicting the value of Y (output
variable) for a specific x

* Inference
— We are interested in understanding the way that Y is affected as X,
..., X, change
» Possible questions addressed
— Which predictors are associated with the response?

— What is the relationship between the response and each predictor?
* Increasing the predictor will increase or decrease the response
— Can the relationship between Y and each predictor be adequately

summarized using a linear equation, or is the relationship more
complicated?




Performance of a (Learned) Regression Model:
Mean Squared Error (MSE)

» Average difference between the true observed-response
(y) and the predicted one (f (x;))

— If we have a training data (X and y)

Y1 11 12 - T1p
Yo a1 i) ... I2p

n
Y= X = : S MSE:%Z(yi_f(xi))z
i=1
Yn Tnl Tp2 ... Ipp
— A.k.a. Training MSE
« However, we are more interested in MSE for future

observations

— Stock market prediction

— Diabetes risk prediction

Test MSE

* We could think about MSE over test observations (X,, Vo)
Ave(yo = f(x0))?

— Minimization of test MSE is required!!!

* How can we minimize test MSE
— If we have a set of test observations, the problem is simple
» Test observations are not used for training
— What if we do not have test observations?
« Can we use training MSE instead of test MSE for assessing models?




Training MSE vs Test MSE
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« Simulation experiments
— Black curve: truth
— Circles: training data (sampled from the black curve)

— Orange, blue, and green curves: learned results with differing
complexity levels (different machine learning models)

Overfitting phenomenon

A Smoother True Function
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» How does the linear line work?




A More Flexible Truth Function
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* Linear line now?

15

How Come Such a Phenomenon Occurs

* Mathematical proof is possible
« We are concerned with

Ave(yo — f(xo))z

» It can be decomposed as
E(yo — f(x0))? = Var (f(x0)) + [Bias(f(xo))]* + Var(e)

— Expectation over training observations (= training data)

* Variance

— The amount by which f (learned result) changes according to the given
training data set

* Bias
— The error introduced by modeling the given problem using a machine
learning model

16




Observations vs Theory
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« The bias-variance trade-off
« Training errors decrease as the model complexity increases

» Test errors show a u-shaped curve

— We must choose an appropriate level of model complexity to obtain
a good test error

17

Linear Regression &
High-Dimensional Sparse Data

18




Regression for the Advertising Data Set

* We have a data set (Advertising)

— Sales (Y), TV (X)), radio (X,), and newspaper (X3) (from 200
cities)

— Y =1(Xy, Xy Xg) + €

Sales
Sales
Sales

0O 20 40 60 80 100

Radio Newspaper
19

Multiple Linear Regression

* Regression formula

Y =00+ 51 X1 + o Xo+ -+ BpXp +e
sales = g + B1 X TV 4+ B9 X radio + 33 X newspaper + €

« Meaning of g;
— Average effect of X; on Y when all other predictor values are

fixed

20
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Estimation of the Coefficients in Multiple Linear
Regression

« We estimate p,, B, ..., B, as the values that minimize the
sum of squared residuals

n

RSS = Z(yi—ﬂz')Q
i=1

= Z(Z/z‘ - Bo - ﬁAlx'il - B2$i2 - Bpwip)2

=1

« Least squares method
» Measures for model fit in multiple linear regression

RSS
n—-p-1

— RSE =

(residual standard error)

_ p2 _ TSS=RSS
R = TSS
e TSS = Z?=1(Yi - )7)2

(the fraction of variance explained)

High-Dimensional Sparse Data

 Low dimensional data

— Predicting blood pressure based on age, gender, and body mass
index

— Data from thousands of people can be obtained
— p<<n
« High-dimensional sparse data
— Blood pressure prediction using millions of single nucleotide
polymorphisms (SNPs)
— Data from thousands of people can be obtained
—_ p > n
» Classical approaches such as the least squares is not
appropriate for the high-dimensional cases

-11-




Least Squares Regression in a Low-Dimensional
Setting

p=1,n=20vsn=2
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— When n<porn = p, the least squares is too flexible to prevent the
overfitting

23

Impact of the Number of Predictors

* N=20;p=1to 20

— All the predictors were unrelated with the response
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Shrinkage Methods

Linear Models for High-Dimensional Sparse Data

« Even linear models with the least squares are too flexible
for some cases
— If n > p: high variability - overfitting
— If n < p: infinite variability = infinite models can fit the data
 Alternative fitting procedures than the (ordinary) least
squares are required

-13-




ldea of the Shrinkage Method

» Constrain or regularize the coefficient estimates
— Shrink the coefficient estimates towards zero

» Shrinking the coefficient estimates could reduce their
variance
— Bias-variance trade-off

[ J o
[ [
o ® o ® o © PO )
No shrinking Shrinking
* Ridge
e Lasso

27

Ridge Regression

* Ordinary least squares methods minimize

RSS = zn: ()’i = Bo — Zp: ,Bjxij>
i=1 j=1

 Alternatively, we minimize the following

p
RSS+2 ) B}
=1

J

— A tuning parameter
» Control the relative impact of shrinkage

28
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Ridge Regression (cont’d)

p
AZ B;?
=

« Shrinkage penalty

— Effect of shrinking the estimates of ; towards zero

« Setting a good value for A is important

Effect of Ridge on Regression Coefficients

100 200 300 400
| | | |
’

Standardized Coefficients
-100 0

— Income

--- Limit

..... Rating
Student

~
P
72

-300

1e-02 1e+00

» Predict balance using ten predictors including income, limit, rating,

and student

I I
1e+02 1e+04

A

Standardized Coefficients

« Left-hand plot: 1 as x-axis value

* Right-hand plot:

— I, norm

271
14T,

as x-axis value

100 200 300 400
|

-100 O

-300

04 06
13802/115112
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Effect of Ridge on Regression Coefficients (cont’d)

« Scale equivariant
— Ordinary least square estimates
« X;p; is invariant regardless of the scale of X;
— Ridge regression
« Standardizing the predictors is needed (y-axis of the previous plot)
xi]-

_\2
i (xij—%5)

1
n

Bias-Variance Trade-Off in Ridge Regression

10 20 30 40 50 60
|

10 20 30 40 50 60
|

Mean Squared Error
Mean Squared Error

0
1
0
1

1e-01 1e+01 1e+03 0.0 0.2 0.4 0.6 0.8 1.0

A 155112/118l2

« Simulated data set (p = 45, n =50)
— Very sparse
» Squared bias, variance, and test MSE

» The variance decreases substantially without substantial
increase in bias till A = ~10 (left-hand plot)

-16-




Advantages and Disadvantages of Ridge Regression

« Advantages
— Ridge regression works very well in situations where the least
squares method results in high variance
* In many bioinformatics data sets, e.g., microarray analysis
— Other benefits of ridge regression

» Less computation is needed compared with other methods, e.g.,
best subset selection

« Disadvantages

— All predictors are used unless 1 = oo

« Can be problematic when interpreting the regression result
(especially when p is large)

* The subset selection approach could do this

» Shrinkage methods for this?

Lasso

« Least Absolute Shrinkage and Selection Operator
« Objective function for lasso

— RSS+2X%5_|B)

— |, penalty

 Inlasso, coefficient estimates for some predictors are
exactly zero if A is sufficiently large

-17-




Effect of Lasso on Regression Coefficients

0 100 200 300 400
1 1 1 | | 1

Standardized Coefficients

-200

20 50 100 200 500

2000 5000

A

Standardized Coefficients

-100 0 100 200 300 400

-300

1 ’
7/
’
B . St .
. sl
4
| =—— Income
--- Limit
o e Rating
Student
T T T T T T
0.0 0.2 0.4 06 0.8 1.0
13501 /1 81

« When A is very large (i.e., > 5,000), only one predictor (rating)
IS included.

 As A decreases, student and limit are added
» Effect of predictor subset selection

Shrinkage Viewed as Constrained Optimization

* Ridge
2
- mﬁin{ ?:1(% = Bo—Xi, :Bjxif) } subject to Z?=1'81'2 =S
* Lasso

2
_ m/gin{ ?:1(%' — By — Z?zlﬁjxij) } subject to ¥¥_ |8 <'s

-18-




Comparison between Ridge and Lasso

L]

» Contours of the error and constraint functions for ridge
(right) and lasso (left)

37

Results of Lasso on Simulated Data Sets (Compared
with Ridge)

» 45 predictors

7

/

T T T T T T T T T T T T T T T T
0.02 0.10 0.50 2.00 10.00 50.00 0.0 0.2 04 0.6 0.8 1.0

\ R?on Training Data

* Only 2 predictors out of the 45 were used for data
generation
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A R on Training Data 38

-10-




How to Determine the Value of A for the Shrinkage
Methods

» Cross-validation can be applied
— The Credit data |

©
5 -
«

300

A
=
o
o :

6 - : /
&

R

o . [
s - —
«

Cross—Validation Error

-100 0 100

Standardized Coefficients

-300

T T
5e-03 5e-02 5e-01 5e+00 5e-03 5e-02 5e-01 5e+00

— The simulated data set (2 out of 45 predictors are rell\ated)

o
5 o 9
.2 1]
c
g o :
T £ o4 |
c 8 © /
S = 8 :
g :
e °
g g s ! =
(}) | g o - '
] | o |
8 ° : < !
g : T w0
« \; B o !
o o H
T T T T T T T T T T T T
0.0 02 04 0.6 08 10 0.0 02 04 06 08 10

1851 /11811 111 /1511

39
Lasso on a High-Dimensional Data Set
« n=100; p = 20, 50, 2000
— Only 20 predictors were related with the response
p=20 p =50 p = 2000
= == _ I -
l 6 o P s o
Degrees of Freedom Degrees of Freedom Degrees of Freedom
— Degrees of freedom: # of non-zero coefficients
40

-20-




Curse of Dimensionality

« Adding additional signal features will improve the fitted
model

« Adding noise features will lead to a deterioration in the
fitted model

« Thus, new technologies (or hypotheses) that allow for
the collection of measurements for thousands/millions of
features are a double-edged sword

— Even if they are signal features, the variance incurred in fitting
their coefficients may outweigh the reduction in bias

Tree Ensembles

-21-




Tree-Based Methods

« Decision tree methods
— Stratifying or segmenting the predictor space into a set of simple
regions
— Use the mean or the mode of the training examples in the region
— The splitting rules can be summarized as a tree

« A simple and useful method
— Especially for interpretation

— However, not competitive with the best supervised learning
method in terms of prediction accuracy

— Some techniques such as bagging, random forests, and
boosting can be used for addressing the prediction accuracy
problem

An Example Regression Tree

* Predict baseball players’ salaries Years < 45
using regression trees
— Response: Salary (in natural logarithm)
— Predictors: Years and Hits

» Aregression tree learned from the
Hitters data set

Hits <[117.5

5.11

— An upside-down tree
— Each internal node: a splitting rule 6.00

— Each terminal (leaf) node: a region
containing a set of examples

* The number denotes the mean Salary value
of the examples included

6.74

-22-




The Regions for the Hitters Data

* Three regions
— Ry ={X] Years < 4.5}
— R, ={X| Years 2 4.5 and Hits
<117.5}
— R;={X| Years 2 4.5 and Hits 2
117.5}
* Interpretation of the tree
— Years is the most important factor

— If a player is less experienced, Hits
does not play an important role

— Otherwise, Hits matters

Hits

R

238

4.5

R,

24
Years

45

An Example Classification Tree

Th{:ll:a
T

Ca 0.5 Ca40.5

N

Yes Yes

MaxHR|< 161.5 Chestfpain:bc

L]

Yes

 Heart data set

— A binary outcome for 303 patients having chest pain

— Have heart disease or not

46
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Trees vs Linear Models

« Depends on the problem at hand

o o

xﬂo/x'c'
T T
—

Performance Improvement of Tree-Based Methods

* High variance in decision trees

— If we randomly divide a data set into two and learn a decision
tree from each of them, then the results would be quite different

— Methods with low variance such as linear regression tends to
have low variance (if nis much larger than p)
« Bootstrap aggregation (i.e., bagging) could reduce this
problem

-24-




Averaging for Reducing Variances

« Given a set of independent observations Z,, Z,, ..., Z,
with a common variance o2

—. g2
— The variance of the mean Z is %

* In a similar way, we could take B training data sets, build
a model from each of them, and average the resulting B
predictions

- f1), 200, - R
- favg(x) = %Zgzlfb(x)

« Of course, the above procedure is not practical because
we usually do not have multiple training data sets

Bagging

* We can use bootstrap for taking averages from a single
data set

« Generate B bootstrapped training data sets (with
replacement)

« Train a method using each of the bootstrapped training
sets

» Average the predictions
— frag@) =3 2b_; F2 (%)

-25-




Bagging (cont’d)

« A graphical representation of the bootstrap approach

Obs | X Y

- - F

D* 2 2. .
l 43 |24 N
> 121 i1 %’ 5153 2s| P
4 Z. . \ = } .
53 |23 \ 1 43 |24
t \ ;
*B
Original Data (D) \e :
\ Obs | X Y A
AN —— B (%)
\a 2.1 1.1

2 | b2

21 |11
3 |24

.

Bagging (cont’d)

« Trees in bagging are grown deep and not pruned
— Thus, each tree has low bias but high variance
— Averaging these trees reduces the variance

* Bagging has been demonstrated to give impressive
improvements by combining hundreds or thousands of
individual trees

* Bagging on the Heart data set
— Bagging with more than 100 trees could improve test accuracy
— Test error was estimated using a validation set approach

-26-




Performance of Bagging on the Heart Data Set

o
o
o
Te}
L\! —
o
5§ 4
w o
mn
o
— Test: Bagging
Test: RandomForest
o —— OOB: Bagging
g = OOB: RandomForest
l I I I l I I
0 50 100 150 200 250 300

Number of Trees

53

Variable Importance Measure

« Bagged trees are hard to interpret

— Bagging improves the prediction accuracy at the expense of
interpretability

* Instead, we can aggregate the importance of each
predictor in each tree
— Alarge value denotes a high importance

54
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Importance of Variables in the Heart Data Set

Fbs
RestECG
ExAng
Sex
Slope
Chol

Age
RestBP
MaxHR
Oldpeak
ChestPain

Ca

Thal

o —
n
o

40 60 80 100

Variable Importance

55

Correlation between Trees

« If there is one very strong predictor in a data set, that
predictor will be always included in the bagged decision
trees

— Moreover, most of the trees will use that predictor on top of the
splits

— Thus, all the bagged trees will look quite similar to one another,
resulting in a high correlation among them

» Averaging high correlated variables usually does not
lead to a large reduction of variance

— Test error of bagging would be large

* Thus, itis important to “decorrelate” the bagged trees

56




Random Forests

» I|dea for decorrelating the trees

— At each iteration of tree building, a random sample of m
predictors are considered instead of all p predictors

— This, we hope that the set of strong predictors would not be
chosen in some cases

— Usually m = /p is used for classification (p/3 for regression)

« By decorrelating the trees, the reduction of variance
would be substantial

 Random forests applied to the Heart data set

57

Performance of Random Forests on the Heart Data
Set

0.30
|

0.25
|

5 %
w o
0
o
— Test: Bagging
Test: RandomForest
o —— OOB: Bagging
S = OOB: RandomForest
l I I I l I I
0 50 100 150 200 250 300

Number of Trees

58
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Random Forests for a Gene Expression Data Set

« A gene expression data set

— 4,718 genes

— 349 patients

— 15 class labels: normal and 14 different types of cancer
« 500 genes with high variance were selected

— 349 x 500 data matrix (very sparse!!)

Performance of Random Forests on the Gene
Expression Data Set

m=p
m=p/2
N m:viﬁ

0.5

0.4

Test Classification Error
0.3

0.2

I \ I \ I \
0 100 200 300 400 500

Number of Trees

« Avalidation set approach was used
» Test error rate of a single tree: 0.457
« Random forests performed well

-30-




Boosting

« Another method for prediction performance improvement

« Trees are grown sequentially
— Each tree is grown using information from previously grown trees
— Each tree is fit on a modified version of the original data set

Algorithm 8.2 Boosting for Regression Trees

1. Set f'(.r) = 0 and r; = y; for all ¢ in the training set.
2. Forb=1,2,.... B, repeat:

(a) Fit a tree FY with d splits (d+ 1 terminal nodes) to the training
data (X, 7).

(b) Update f by adding in a shrunken version of the new tree:
flw) = flw) + A (). (8.10)
(c) Update the residuals,
ri i — A0 (rs). (8.11)

3. Output the boosted model,

B
fla) =3 Afl(x). (8.12)
b=1

Parameters for Boosting

* Number of trees B
— Alarge B values could result in overfitting
— CVis used to select B

« Shrinkage parameter 4
— A small positive number such as 0.01 and 0.001

* Number d of splits in each tree
— Controls the complexity of each tree
— Often d = 1 works well in practice (a.k.a. decision stumps)
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Comparison between Boosting and Random Forests

(the Gene Expression Data Set: Cancer vs Normal)

Te]
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Boosting: depth=2
—— RandomForest: m=,/p
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