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안녕하십니까?

한국생명정보학회의 동계 워크샵인 BIML-2021을 2월 15부터 2월 19일까지 개최합니

다. 생명정보학 분야의 융합이론 보급과 실무역량 강화를 위해 도입한 전문 교육 프

로그램인 BIML 워크샵은 2015년에 시작하였으며 올해로 7차를 맞이하게 되었습니다. 

유례가 없는 코로나 대유행으로 인해 올해의 BIML 워크숍은 온라인으로 준비했습니

다. 생생한 현장 강의에서만 느낄 수 있는 강의자와 수강생 사이의 상호교감을 가질 

수 없다는 단점이 있지만, 온라인 강의의 여러 장점을 살려서 최근 생명정보학에서 

주목받고 있는 거의 모든 분야를 망라한 강의를 준비했습니다. 또한 온라인 강의의 

한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 

BIML 워크샵은 전통적으로 크게 생명정보학과 AI, 두 개의 분야로 구성되어오고 있으

며 올해 역시 유사한 방식을 채택했습니다. AI 분야는 Probabilistic Modeling, 

Dimensionality Reduction, SVM 등과 같은 전통적인 Machine Learning부터 Deep 

Learning을 이용한 신약개발 및 유전체 연구까지 다양한 내용을 다루고 있습니다. 생

명정보학 분야로는, Proteomics, Chemoinformatics, Single Cell Genomics, Cancer 

Genomics, Network Biology, 3D Epigenomics, RNA Biology, Microbiome 등 거의 모

든 분야가 포함되어 있습니다. 연사들은 각 분야 최고의 전문가들이라 자부합니다. 

이번 BIML-2021을 준비하기까지 너무나 많은 수고를 해주신 BIML-2021 운영위원회

의 김태민 교수님, 류성호 교수님, 남진우 교수님, 백대현 교수님께 커다란 감사를 드

립니다. 또한 재정적 도움을 주신, 김선 교수님 (AI-based Drug Discovery), 류성호 교

수님, 남진우 교수님께 감사를 표시하고 싶습니다. 마지막으로 부족한 시간에도 불구

하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 강의자료를 만드는데 노력하셨을 뿐만 

아니라 실시간 온라인 Q&A 세션까지 참여해 수고해 주시는 모든 연사분들께 깊이 

감사드립니다. 

2021년 2월 

한국생명정보학회장 김동섭



강의개요 

  

Shrinkage Methods and Tree Ensembles for High-

dimensional Sparse Data 

 

  생물정보학에서 다루는 많은 데이터들은 변수의 개수는 많지만 표본 크기는 

“상대적으로 작은” 고차원 희박 데이터(high-dimensional sparse data)이다. 예를 들어 

마이크로어레이나 RNA 시퀀싱으로 얻어지는 유전자 발현 데이터는 수천 ~ 수만 

개의 유전자에 대한 발현 정보를 가지고 있지만 표본의 크기는 대부분 수백 ~ 

수만에 지나지 않는다. 

  본 강의에서는 고차원 희박 데이터가 기계학습에 어떠한 악영향을 미치는지를 

직관적으로 설명하고, 이러한 데이터를 분석하는 데 널리 사용되는 shrinkage 방법과 

tree ensemble에 대해 설명한다. 선형회귀 및 로지스틱 회귀 기반의 shrinkage 

방법이 어떠한 전략으로 고차원 희박 데이터 문제를 해결하는지 설명하고, 그 

구체적인 활용 방법에 대해 강의한다. 또한, 고차원 희박 데이터를 다룰 수 있는 

비선형 방법인 결정트리(decision tree) 기반의 tree ensemble도 상세히 다룬다. 

  강의는 다음의 내용을 포함한다: 

⚫ Bias-Variance Trade-Off 

⚫ 고차원 희박 데이터의 문제점 

⚫ Shrinkage 방법 (Ridge, Lasso, Elastic Net) 

⚫ Tree Ensemble (Bagging, Random Forest, Boosting) 

 

 

*참고강의교재: 

An Introduction to Statistical Learning: with Applications in R (Springer, 2013) 

 

*교육생준비물: 

 노트북 (동영상 강의 시청용) 

 

* 강의: 황규백 교수 (숭실대학교 컴퓨터학부) 
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Shrinkage Methods and Tree Ensembles for High-
dimensional Sparse Data

황규백 (숭실대학교)

KSBi-BIML
2021

본강의 자료는 한국생명정보학회가 주관하는 KSBi-BIML 

2021 워크샵 온라인 수업을 목적으로 제작된것으로 해당

목적 이외의 다른 용도로 사용할 수없음을 분명하게 알립니

다.  수업 목적으로 배포 및 전송 받은 경우에도 이를 다른

사람과 공유하거나 복제, 배포, 전송할 수없습니다. 

만약 이러한 사항을 위반할 경우 발생하는 모든 법적 책임은

전적으로 불법 행위자 본인에게 있음을 경고합니다.
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들어가면서

• 강의내용
– 편향-분산딜레마

– 선형회귀와고차원희박데이터

– Shrinkage 방법

– Tree Ensemble 방법

• 참고교재
– An Introduction to Statistical Learning: with Applications in R 

(Springer, 2013)

3

Bias-Variance Trade-Off

4
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A Machine Learning Example:

Advertising Problem

• How to improve sales of a particular product

– By controlling the advertising expenditure

• Data

– Sales of the product in 200 different markets

– Advertising budgets for the product in each of those markets for 

three different media: TV, radio, and newspaper

• Goal

– Develop an accurate model for predicting sales given the three 

media budgets

5

A Statistical Learning Setting

• Input variables
– TV budget (X1), radio budget (X2), and newspaper budget (X3)

– Different names

• Predictors, independent variables, features, and variables

• Output variable
– sales (Y)

– Different names

• Response, dependent variable, and target variable

• Our assumption
– Y = f(X) + ε

– f: a function

– ε: an error term

6

-3-



Statistical (Machine) Learning

• We try to estimate “f” from a given (training) data set

• Machine learning is about a set of approaches to 

estimating the f

• Diverse disciplines are related to machine learning

– Computer science

– Electronic engineering

– Statistics

7

Types of Machine Learning

• Supervised learning

– A target variable (Y) is given

– Regression vs classification

– Disease diagnosis based on a lab test

• Unsupervised learning

– There is no target variable

– Exploratory data analysis; feature extraction

– Clustering of genes based on their expression patterns

• Reinforcement learning

– Instead of a target variable, reward is given to an agent

– AlphaGo

– Robot navigation (mapping and localization)

8

-4-



Types of Supervised Learning

• Quantitative target-variables

– Numerical values

– Age, height, income, sales

– Regression

• Advertising problem

• Qualitative target-variables

– Categorical values

– Gender, cancer diagnosis

– Classification

9

Why Estimate f?

• Prediction

– If we estimated f, we can use it for predicting the value of Y (output 

variable) for a specific x

• Inference

– We are interested in understanding the way that Y is affected as X1, 

…, Xp change

• Possible questions addressed

– Which predictors are associated with the response?

– What is the relationship between the response and each predictor?

• Increasing the predictor will increase or decrease the response

– Can the relationship between Y and each predictor be adequately 

summarized using a linear equation, or is the relationship more 

complicated?

10

-5-



Performance of a (Learned) Regression Model:

Mean Squared Error (MSE)

• Average difference between the true observed-response

(yi) and the predicted one ( መ𝑓(𝑥𝑖))
– If we have a training data (X and y)

– A.k.a. Training MSE

• However, we are more interested in MSE for future 

observations

– Stock market prediction

– Diabetes risk prediction

11

𝑀𝑆𝐸 =
1

𝑛
෍

𝑖=1

𝑛

(𝑦𝑖 − መ𝑓 𝑥𝑖 )
2

Test MSE

• We could think about MSE over test observations (x0, y0)

– Minimization of test MSE is required!!!

• How can we minimize test MSE

– If we have a set of test observations, the problem is simple

• Test observations are not used for training

– What if we do not have test observations?

• Can we use training MSE instead of test MSE for assessing models?

12

𝐴𝑣𝑒(𝑦0 − መ𝑓(𝑥0))
2
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Training MSE vs Test MSE

• Simulation experiments
– Black curve: truth

– Circles: training data (sampled from the black curve)

– Orange, blue, and green curves: learned results with differing 
complexity levels (different machine learning models)

– Overfitting phenomenon

13

A Smoother True Function

• How does the linear line work?

14
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A More Flexible Truth Function

• Linear line now?

15

How Come Such a Phenomenon Occurs

• Mathematical proof is possible

• We are concerned with

• It can be decomposed as

– Expectation over training observations (= training data)

• Variance

– The amount by which f (learned result) changes according to the given 
training data set

• Bias

– The error introduced by modeling the given problem using a machine 
learning model

16

𝐴𝑣𝑒(𝑦0 − መ𝑓(𝑥0))
2

𝐸(𝑦0 − መ𝑓(𝑥0))
2 = 𝑉𝑎𝑟 መ𝑓 𝑥0 + 𝐵𝑖𝑎𝑠( መ𝑓 𝑥0 )

2
+ 𝑉𝑎𝑟(𝜀)

-8-



Observations vs Theory

• The bias-variance trade-off

• Training errors decrease as the model complexity increases

• Test errors show a u-shaped curve
– We must choose an appropriate level of model complexity to obtain 

a good test error

17

Linear Regression &

High-Dimensional Sparse Data

18
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Regression for the Advertising Data Set

• We have a data set (Advertising)

– Sales (Y), TV (X1), radio (X2), and newspaper (X3) (from 200 

cities)

– Y = f(X1, X2, X3) + ε

19

Multiple Linear Regression

• Regression formula

• Meaning of 𝛽𝑗
– Average effect of Xj on Y when all other predictor values are 

fixed

20
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Estimation of the Coefficients in Multiple Linear 

Regression

• We estimate 𝛽0, 𝛽1, … , 𝛽𝑝 as the values that minimize the 

sum of squared residuals 

• Least squares method

• Measures for model fit in multiple linear regression

– 𝑅𝑆𝐸 =
𝑅𝑆𝑆

𝑛−𝑝−1
(residual standard error)

– 𝑅2 =
𝑇𝑆𝑆−𝑅𝑆𝑆

𝑇𝑆𝑆
(the fraction of variance explained)

• 𝑇𝑆𝑆 = σ𝑖=1
𝑛 𝑦𝑖 − ത𝑦 2

21

High-Dimensional Sparse Data

• Low dimensional data

– Predicting blood pressure based on age, gender, and body mass 

index

– Data from thousands of people can be obtained

– p << n

• High-dimensional sparse data

– Blood pressure prediction using millions of single nucleotide 

polymorphisms (SNPs)

– Data from thousands of people can be obtained

– p > n

• Classical approaches such as the least squares is not 

appropriate for the high-dimensional cases

22
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Least Squares Regression in a Low-Dimensional 

Setting

• p = 1; n = 20 vs n = 2

– When n < p or 𝑛 ≈ 𝑝, the least squares is too flexible to prevent the 
overfitting

23

Impact of the Number of Predictors

• n = 20; p = 1 to 20

– All the predictors were unrelated with the response

24

-12-



Shrinkage Methods

25

Linear Models for High-Dimensional Sparse Data

• Even linear models with the least squares are too flexible 

for some cases

– If n > p: high variability → overfitting

– If n < p: infinite variability → infinite models can fit the data

• Alternative fitting procedures than the (ordinary) least 

squares are required

26
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Idea of the Shrinkage Method

• Constrain or regularize the coefficient estimates
– Shrink the coefficient estimates towards zero

• Shrinking the coefficient estimates could reduce their 
variance
– Bias-variance trade-off

• Ridge

• Lasso

27

No shrinking Shrinking

Ridge Regression

• Ordinary least squares methods minimize

• Alternatively, we minimize the following

– λ: tuning parameter

• Control the relative impact of shrinkage

28

𝑅𝑆𝑆 =෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽0 −෍

𝑗=1

𝑝

𝛽𝑗𝑥𝑖𝑗

𝑅𝑆𝑆 + 𝜆෍

𝑗=1

𝑝

𝛽𝑗
2
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Ridge Regression (cont’d)

• Shrinkage penalty

– Effect of shrinking the estimates of 𝛽𝑗 towards zero

• Setting a good value for 𝜆 is important

29

𝜆෍

𝑗=1

𝑝

𝛽𝑗
2

Effect of Ridge on Regression Coefficients

• Predict balance using ten predictors including income, limit, rating, 
and student

• Left-hand plot: 𝜆 as x-axis value

• Right-hand plot: 
෡𝛽𝜆

𝑅

2
෡𝛽

2

as x-axis value

– l2 norm
30
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Effect of Ridge on Regression Coefficients (cont’d)

• Scale equivariant

– Ordinary least square estimates

• 𝑋𝑗 መ𝛽𝑗 is invariant regardless of the scale of 𝑋𝑗

– Ridge regression

• Standardizing the predictors is needed (y-axis of the previous plot)

• ෤𝑥𝑖𝑗 =
𝑥𝑖𝑗

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖𝑗− ҧ𝑥𝑗

2

31

Bias-Variance Trade-Off in Ridge Regression

• Simulated data set (p = 45, n = 50)
– Very sparse

• Squared bias, variance, and test MSE

• The variance decreases substantially without substantial 
increase in bias till 𝜆 = ~10 (left-hand plot)

32
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Advantages and Disadvantages of Ridge Regression

• Advantages

– Ridge regression works very well in situations where the least 

squares method results in high variance

• In many bioinformatics data sets, e.g., microarray analysis

– Other benefits of ridge regression

• Less computation is needed compared with other methods, e.g., 

best subset selection

• Disadvantages

– All predictors are used unless 𝜆 = ∞

• Can be problematic when interpreting the regression result 

(especially when p is large)

• The subset selection approach could do this

• Shrinkage methods for this?

33

Lasso

• Least Absolute Shrinkage and Selection Operator

• Objective function for lasso

– 𝑅𝑆𝑆 + 𝜆σ𝑗=1
𝑝

𝛽𝑗

– l1 penalty

• In lasso, coefficient estimates for some predictors are 

exactly zero if 𝜆 is sufficiently large

34
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Effect of Lasso on Regression Coefficients

• When 𝜆 is very large (i.e., > 5,000), only one predictor (rating) 
is included.

• As 𝜆 decreases, student and limit are added

• Effect of predictor subset selection

35

Shrinkage Viewed as Constrained Optimization

• Ridge

– min
𝛽

σ𝑖=1
𝑛 𝑦𝑖 − 𝛽0 − σ𝑗=1

𝑝
𝛽𝑗𝑥𝑖𝑗

2
subject to σ𝑗=1

𝑝
𝛽𝑗

2 ≤ 𝑠

• Lasso

– min
𝛽

σ𝑖=1
𝑛 𝑦𝑖 − 𝛽0 − σ𝑗=1

𝑝
𝛽𝑗𝑥𝑖𝑗

2
subject to σ𝑗=1

𝑝
𝛽𝑗 ≤ 𝑠

36
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Comparison between Ridge and Lasso

37

• Contours of the error and constraint functions for ridge 

(right) and lasso (left)

Results of Lasso on Simulated Data Sets (Compared 

with Ridge)

• 45 predictors

• Only 2 predictors out of the 45 were used for data 

generation

38

-19-



How to Determine the Value of λ for the Shrinkage 

Methods

• Cross-validation can be applied

– The Credit data

– The simulated data set (2 out of 45 predictors are related)

39

Lasso on a High-Dimensional Data Set

• n = 100; p = 20, 50, 2000
– Only 20 predictors were related with the response

– Degrees of freedom: # of non-zero coefficients
40
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Curse of Dimensionality

• Adding additional signal features will improve the fitted 

model

• Adding noise features will lead to a deterioration in the 

fitted model

• Thus, new technologies (or hypotheses) that allow for 

the collection of measurements for thousands/millions of 

features are a double-edged sword

– Even if they are signal features, the variance incurred in fitting 

their coefficients may outweigh the reduction in bias

41

Tree Ensembles

42
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Tree-Based Methods

• Decision tree methods

– Stratifying or segmenting the predictor space into a set of simple 

regions

– Use the mean or the mode of the training examples in the region

– The splitting rules can be summarized as a tree

• A simple and useful method

– Especially for interpretation

– However, not competitive with the best supervised learning 

method in terms of prediction accuracy

– Some techniques such as bagging, random forests, and 

boosting can be used for addressing the prediction accuracy 

problem

43

An Example Regression Tree

• Predict baseball players’ salaries 

using regression trees

– Response: Salary (in natural logarithm)

– Predictors: Years and Hits

• A regression tree learned from the 

Hitters data set

– An upside-down tree

– Each internal node: a splitting rule

– Each terminal (leaf) node: a region 

containing a set of examples

• The number denotes the mean Salary value 

of the examples included

44
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The Regions for the Hitters Data

• Three regions

– R1 = {X | Years < 4.5}

– R2 = {X | Years ≥ 4.5 and Hits

< 117.5}

– R3 = {X | Years ≥ 4.5 and Hits ≥ 

117.5}

• Interpretation of the tree

– Years is the most important factor

– If a player is less experienced, Hits

does not play an important role

– Otherwise, Hits matters

45

An Example Classification Tree

• Heart data set
– A binary outcome for 303 patients having chest pain

– Have heart disease or not

46
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Trees vs Linear Models

• Depends on the problem at hand

47

Performance Improvement of Tree-Based Methods

• High variance in decision trees

– If we randomly divide a data set into two and learn a decision 

tree from each of them, then the results would be quite different

– Methods with low variance such as linear regression tends to 

have low variance (if n is much larger than p)

• Bootstrap aggregation (i.e., bagging) could reduce this 

problem

48
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Averaging for Reducing Variances

• Given a set of independent observations Z1, Z2, …, Zn

with a common variance 𝜎2

– The variance of the mean ҧ𝑍 is 
𝜎2

𝑛

• In a similar way, we could take B training data sets, build 

a model from each of them, and average the resulting B 

predictions

– መ𝑓1(𝑥), መ𝑓2(𝑥), …, መ𝑓𝐵(𝑥)

– መ𝑓𝑎𝑣𝑔 𝑥 =
1

𝐵
σ𝑏=1
𝐵 መ𝑓𝑏(𝑥)

• Of course, the above procedure is not practical because 

we usually do not have multiple training data sets

49

Bagging

• We can use bootstrap for taking averages from a single 

data set

• Generate B bootstrapped training data sets (with 

replacement)

• Train a method using each of the bootstrapped training 

sets

• Average the predictions

– መ𝑓𝑏𝑎𝑔 𝑥 =
1

𝐵
σ𝑏=1
𝐵 መ𝑓∗𝑏(𝑥)
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Bagging (cont’d)

• A graphical representation of the bootstrap approach

51

(𝐷)

𝐷∗1

𝐷∗2

𝐷∗𝐵

መ𝑓∗1(𝑥)

መ𝑓∗2(𝑥)

መ𝑓∗𝐵(𝑥)

Bagging (cont’d)

• Trees in bagging are grown deep and not pruned

– Thus, each tree has low bias but high variance

– Averaging these trees reduces the variance

• Bagging has been demonstrated to give impressive 

improvements by combining hundreds or thousands of 

individual trees

• Bagging on the Heart data set

– Bagging with more than 100 trees could improve test accuracy

– Test error was estimated using a validation set approach
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Performance of Bagging on the Heart Data Set

53

Variable Importance Measure

• Bagged trees are hard to interpret

– Bagging improves the prediction accuracy at the expense of 

interpretability

• Instead, we can aggregate the importance of each 

predictor in each tree

– A large value denotes a high importance
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Importance of Variables in the Heart Data Set

55

Correlation between Trees

• If there is one very strong predictor in a data set, that 

predictor will be always included in the bagged decision 

trees

– Moreover, most of the trees will use that predictor on top of the 

splits

– Thus, all the bagged trees will look quite similar to one another, 

resulting in a high correlation among them

• Averaging high correlated variables usually does not 

lead to a large reduction of variance

– Test error of bagging would be large

• Thus, it is important to “decorrelate” the bagged trees
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Random Forests

• Idea for decorrelating the trees

– At each iteration of tree building, a random sample of m 

predictors are considered instead of all p predictors

– This, we hope that the set of strong predictors would not be 

chosen in some cases

– Usually 𝑚 = 𝑝 is used for classification (𝑝/3 for regression)

• By decorrelating the trees, the reduction of variance 

would be substantial

• Random forests applied to the Heart data set

57

Performance of Random Forests on the Heart Data 

Set
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Random Forests for a Gene Expression Data Set

• A gene expression data set

– 4,718 genes

– 349 patients

– 15 class labels: normal and 14 different types of cancer

• 500 genes with high variance were selected

– 349 x 500 data matrix (very sparse!!)

59

Performance of Random Forests on the Gene 

Expression Data Set

• A validation set approach was used

• Test error rate of a single tree: 0.457

• Random forests performed well
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Boosting

• Another method for prediction performance improvement

• Trees are grown sequentially

– Each tree is grown using information from previously grown trees

– Each tree is fit on a modified version of the original data set

61

Parameters for Boosting

• Number of trees B

– A large B values could result in overfitting

– CV is used to select B

• Shrinkage parameter 𝜆
– A small positive number such as 0.01 and 0.001

• Number d of splits in each tree

– Controls the complexity of each tree

– Often d = 1 works well in practice (a.k.a. decision stumps)
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Comparison between Boosting and Random Forests 

(the Gene Expression Data Set: Cancer vs Normal)
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마치면서

• 학습오류와테스트오류는불일치할수있다
– 과대적합

• 테스트오류는편향과분산으로구성된다
– 모델의복잡도가크고주어진데이터의크기가작은경우분산이
커질수있다

• 고차원희박데이터의경우복잡도가낮은선형모델도
분산이클수있다
– Shrinkage 방법은이러한문제를완화할수있다

• Tree 기반방법은결과의해석이용이한장점이있지만
예측성능은다른기계학습방법에비해떨어진다
– 성능을향상시키는방법으로 tree ensemble이주로적용된다

– 고차원희박데이터에도잘적용될수있다
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