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Mutational signatures in cancer genomes

Cancer genome sequencings O|&%tH REl= FAS Hlg = USNW
RMHEe2= AH3 ANME MESH7| I8t cancer driver mutationg &7 f{%t
SHE MQICt SX|8F Cancer genomeOlA L& = B2 SABO|Q| pattern,

mutational signatureE HMAZ2=zE FEASIH FHAEMZEM & MzZ=2 SHI

rfr

S
WHEESOM =2HO|SS S0l 7[HE Oloie =+ UL
2 ZooME & MZEOA LS EHHO|ZEE mutational signatureS U2 H|

MYSICH  Mutational signature®| 7H'"E, signatureE

=X

=
callingot= ZXE[E H == 27H0HH, 0|8 2H & *TM HOIHO HE5SH]
REM0|R A 2MS & + UAs Y gEFS dF= AS FHEER oL



Curriculum Vitae

Speaker Name:Young Seok Ju, MD, PhD.

» Personal Info

Name Young Seok Ju
-~ -~ Title Associate Professor
b B R
Affiliation KAIST

-

» Contact Information
Address 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141

-

(3 Email ysju@kaist.ac kr
& Phone Number 042-350-4237

Research interest : Somatic muttions in human cells

Educational Experience
2007 M.D. in Medicine, Seoul National University College of Medicine, Korea

2010 Ph.D. in Genomic Medicine, Seoul National University College of Medicine, Korea

Professional Experience
2013-2015 Postdoctoral Fellow, Wellcome Sanger Institute, Cambridge UK

2015- Assistant/Associate Professor, KAIST, Daejeon, Korea

Selected Publications (5 maximum)

1. Youk J*, Kim T*, Evans KV*, Jeong Y-I*, Hur Y*, Hong SP*, ..., Kim YT#, Koh GY#, Choi B-S#, Ju
YS#, Lee JH#. Three-dimensional human alveolar stem cell culture models reveal infection response to
SARS-CoV-2. Cell Stem Cell. 2020 epub ahead of print.

2. Yuan Y*, Ju YS*, Kim Y*, Li J, Wang J, ... , & Liang H. Comprehensive molecular characterization of
mitochondrial genomes in human cancers. Nat Genet. 2020 Mar;52(3):342-352. PMID:32024997.

3. Lee JS, AnY, Yoon CJ, Kim JY, Kim KH, ..., Lee EY# & Ju YS#. Germline gain-of-function mutation of
STAT1 rescued by somatic mosaicism in immune dysregulation-polyendocrinopathy-enteropathy-X-linked-
like disorder. J Allergy Clin Immunol. 2020 Mar;145(3):1017-1021. PMID:31805313

4. Lee JJ-K, Park S, Park H, Kim S, Lee J, ..., Ju YS# & Kim YT#. Tracing oncogene rearrangements in the
mutational history of lung adenocarcinoma. Ce/l. 2019 Jun 13;177(7):1842-1857. PMID:31155235.

5. Lee JK,, Lee ], Kim S, Kim S, Youk J, ..., Kim TM# & Ju YS#. Clonal history and genetic predictors of
transformation into small cell carcinomas from lung adenocarcinomas. Journal of Clinical Oncology
2017 Sep 10;35(26):3065-3074. PMID:28498782



KSBi-BIML
2021

Mutational signatures in cancer genomes
TG A (KAIST)

T3 ysju@kaist.ac.kr




. BH0| w2t CrbE I YS 0|8 4 US

o QAA O|A}: BHAL HOf| A clinically actionable targetS 2=, 20 8
(EGFR activating mutation &=)

+ Genomics, Bioinformatics 0 2tA10| Q= StEA !
MZL =9H0| &=, technology/bioinformatics 7H !,

12 ol7.gl

S
—

=

o

o ZAtLE A0
Pipeline 7+

) . . : . Chemotherapy-
Fertilized egg  Gestation Infancy Childhood  Adulthood %flgﬁls?gﬁl Elerr?(lgur:' Earga'r?gss’we Lal(e:alﬂgfé?we resistanlpy
P recurrence
** ****a ’
D N N N N
o N \No N’ N \PB
Intrinsic
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) 9 phenotype Chemotherapy m==m
Y7 Driver mutation
Chgmotherap¥ i
resistance mutation 1-10 or more
driver mutations

, > 5>
10s-100,000 or more

10s-1,000s of mitoses 10s-100s of mitoses
depending on the organ depending on the cancer passenger mutations

cancer other processes, for example DNA repair defects, may contribute to
the mutational burden. Passenger mutations do not have any effect on the
cancer cell, but driver mutations will cause a clonal expansion. Relapse after
chemotherapy can be associated with resistance mutations that often
predate the initiation of treatment.

Figure 1| The lineage of mitotic cell divisions from the fertilized egg to a
single cell within a cancer showing the timing of the somatic mutations
acquired by the cancer cell and the processes that contribute to them.
Mutations may be acquired while the cell lineage is phenotypically normal,
reflecting both the intrinsic mutations acquired during normal cell division
and the effects of exogenous mutagens. During the development of the
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Stratton et al., Nature (2009)
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DNA protein life
transcript alterations aberrant pathways neoplasm
MUTATIONS FUNCTIONAL IMPACTS
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* Coding mutation (in the protein coding region)
* Non-sense/frameshift (truncating, stop-gain)
* Missense (non-synonymous)
* Silent (synonymous)
* UTR, intronic, splicing-junction
* intergenic (between two genes)
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Driver mutations in pan-cancer genomes
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An example of genome-wide sequencing of a cancer genome

Sample information Mutations in cancer-related genes
Sex F ALK (fusion with EML4)
Age 47
Smoking never smoker o N R
Composition of mutational signature
Ploidy 24
Purity 0.75 signature 5 [N s5.9%
No. of Substitutions 1g07| | Smatret [N oo
No. of Indels 160| | Soreuwrete Mok
signature 2 | 3.5%
No. of Rearrangements 20

Mutational spectra

. C>A c>G Gzl T>A T>C T>6
fusion oncogenic 7&
rearrangement H
3 T
Oncogene rearrangement
+ Simple reciprocal inversion
ALK a» ® EML4

Absolute CN

Positions on chromosome 2 (Mb)

Asimple reciprocal inversion

Lee JJ et al., Cell (2019)
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Alexandrov L et al., Nature (2013)

WGS (3,000 Mb) =» 3,000 (1,000 — 100,000 substitutions)
WES (~50 Mb) =» 50 (10 — 1,000 substitutions)
Targeted-gene seq. (covers ~1 Mb) =» 10 (1 — 100 substitutions)




Cancer genomicsHlM passenger mutation2 £27} gi=712

f : . f - Chemotherapy-
i : : Early clonal Benign  Early invasive Late invasive d
Fertilized egg  Gestation Infancy Childhood  Adulthood expye’insion Tumogur gancer cancer resistant
recurrence
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Intrinsic 1
mutation processes Environmental
o - and lifestyle exposures Mutator
assenger mutation
) g phenotype Chemotherapy s
¥¢ Driver mutation
Ch_emotherap){ .
resistance mutation 1-10 or more
> driver mutations
10s-1,000s of mitoses 10s-100s of mitoses 10s-100,000 or more
depending on the organ depending on the cancer passenger mutations

Stratton et al., Nature (2009)
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An example of base substitution

We are looking at this position

T3 =]
(B W | ——— ———— 1
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57 bp

178,956,070 bp 172,956,080 by 178,956,100 by 17385110 ke
I I | I I

DIRT
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matched normal
sequence = I
T Blood sample has

the wildtype (G) allele
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To-a31
bam Coverage

Lung adenocarcinoma : ~_
sequence 2 G to A mutation -
: in PIK3CA gene in cancer
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Researc

Table 1. Summary statistics of sequencing analysis of the lung cancer patient AKSS

Massively parallel sequencing (mappable) Validation

A transforming KIF5B and RET gene fusion in lung

. No. of aligned Read length Throughput ~ Read depth  PCR and Sanger
adenocarcinoma revealed from whole-genome hnyis e Source reads ) @l seauenang
i i G Fresh 392,194,564 2103 8079 2827 ve
and transcriptome sequencing - e e Dhw BB Im B8 ¥
L i . . b rroun Slooms aximsxim  nen oo
Young Seok Ju,"2 Won-Chul Lee, " Jong-Yeon Shin,'* Seungbok Lee, — R - =

1348

Thomas Bleazard,’ Jae-Kyung Won,® Young Tae Kim,%”
Jin-Hyoung Kang,® and Jeong-Sun Seo'-234&10

'Ge enter, Ur /, Seoul 110-799, Korea; *Macrogen Inc. Seoul
153.781, Korea; *Department of Somedical Science, Seoul National Univerity Gradaate School, Seoul 110.799, Korea; “Psoma
Therapeutic Inc., Seoul 153781, Korea; *Molecular Pathology Center, Seoul National Universty Cancer Hospital, Seoul 110744,
Korea; “Department of Thoracic and C Surgery, I Institute, spital, Seoul 110-
799, Korea; ”Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea, "Depmmmx

of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Korea; *Department

of Intemal Medicine, Seoul St. Mary’s Hospital, The Catholic University, Seoul 137-040, Korea

Jong-Il Kim,
“Genome sequence of the primary lung cancer was used only in the validation phase since the quality of DNA from formalin fixed paraffin embedded
(FFPE) tssue was not sufficient for the discovery phase.

34 discordant
paired-end reads
KIF5B exon #16

5 GUCAGCUUCGUAUCUCUCAA | GAGGAUCCAAAGUGGGAAUU- 3

RET exon #12

vens that drive cancer ion i essential ed
that improve the dlnical outcome of lung cancer. Many studies have reported genomic driver mutations in non-smalk-cell
Lung cancers (NSCLC) over the past decade; however, the molecular pathogenesis of >40% of NSCLCs s till unknown. To
identify new molecular targets in NSCLCs, we performed the combined analysis of massively parallel wholegenome and
transcriptome sequencing for cancer and paired normal tisue of a 33-yr-old lung adenocarcinoma patient, who is a never-
smoker and has no familial cancer history. The cancer showed no known driver mutation in EGFRor KRASand no EMLA-ALK
fusion. Here we report a novel fusion gene between KIFSB and the RET proto-oncogene caused by a pericentric inversion of
10piL2-f12L Tis fsion gene overexpresss chimeric RET receptor tyosine klnase, which could spontaneously induce
ellular SBRET fusion in of

n study. Our data demonstrate thzla bset of NSCLCs could be causd by a fuson of KIFS and RET,and suggest the
chimeric oncogene as a promising molecular target for the personalized diagnoss and treatment of lung cancer.

Genome Research
(2012.3)

60 spanning reads
across exon-junction

120

RNA breakpoint for
KIFSB-RET fusion

[Supplemental material s available for this article.]

Expression level (read—depth)
6

8
Lung cancer remains a leading cause of mortality in cancer, with  EGFR, which are assoclated preferentially with NSCLCs of non-
around 138 million deaths worldwide annually (Ferlay etal. 2010, smokers and Asians, are sensitive to EGFR-targeted therapy, such °
With a conventional chemotherapeutic regimen, the median sur- s gefitinib (Pacz et al. 2004). Missense mutations in KRAS a RET proto-oncogenefsoforn ¢ (M.020630) |
Vivaltme for i cancer patiens In advanced stages 5 <1 31 iom  common I the ung adenocarcinomas of smokers and Indace
diagnosis (Schiller et al. 2002). Tobacco smoking is known to be ce to EGFRinhil 008). the U — !
amajor risk factor of lung cancer in Western countries, where 85%-  EML4-ALK fusion gene was identified in NSCLC (Soda etal. 2007),
90% ofall lung cancers were atributed to smoking (Toh ctal. 2006, which is generated by inversion in chromosome 2. This fusion v
However, ~25% of lung cancer patients worldwide are “never-  gene, formed et
smokers” (Lee et al. 2011). Data from many Asian countres have  detected in the lung adenocarcinoma of young patients, regar.
shown that never-smokers constitute 30%—40% of non-smallecll less of ethnicity, with no or ltte history of cigarette smoking
~ accounts for ~80% of lung cancer  (Wong etal. 2009). ALK-positive lung cancer constitutes ~5% of
Govindan 2007), and the dominant his-  NSCLCs and is highly sensitive to ALK inhibitors, such tinib 2 2 29 sie60 is
tological type is adenocardnoma (>50%) (Pao and Girard 2011). (Pao and Girard 2011). Kinosin
Lung cancer of neve mokerstnds t be driven by singe - Although several geneti mtations have been reported pre P . B Coledeol |

matic mutation events, rather than global genctic and epigenctic  viously, a large proportion of lung cancer patients have been ob-
changes (Lee et al. 2011). A subset of somatic mutations has been  served to have none of them in their cancer genome. More than
s NSCLLS n the et e Y sch 13 BGER, KRS, and - 40% of NSCLCsappea 8 b e by uicacnen enetc evets

(Harris 2010; Pao and Girard 2011). en o tn on
w.(, o o 001 ). Mutations in the tyrosine kinase domain of Here we report a novel fusion gene generated by a chromo-

cinoma patient, whose cancer was negative for the triple-markers,
e oprenig eviher, using massively parallel DNA and RNA sequencing, The patient, omoamaneaton. s\ mngoncimoe sty
e . . Ak, sepplernanal b Known as AKSS, was healthy until he was 33 yr of age, when @
oo dote are ot W ot Gerome.ony e 1010V 153645411, P P iy

lobe of a lung (Fig. 1A). He had no known family history of cancers 168 e a7y 724 1016

RET ProtoinTyr kinase
(1,194 33)

436 Genome Research
Wiww.genome.org,

220436445 © 2012 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; waww:genome.org Trans-
membrane 7124713

oxtracolur cyioplasnic

JuYS et al., Genome Res (2012a)
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The transcriptional landscape and mutational

. . £34
profile of lung adenocarcinoma - e
cepce-Ros1  ccocs Wl Tyrosine kinase ROS1
Jeong-Sun Seo,"23#51112 Young Seok Ju,*'" Won-Chul Lee,"*'" jong-Yeon Shin, " A omroctr Lo
16 1 1 i 7 " 8
June Koo Lee, ) Tshomas Bleazards, .Junho. Lei, Yoo Jin Jung, ]ur;g Oh Kim, FOFRZCIT  FGFR B
Jung-Young Shin,” Saet-Byeol Yu,” Jihye Kim,> Eung-Ryoung Lee,
Chang-Hyun Kang,® In-Kyu Park,” Hwanseok Rhee,* Se-Hoon Lee,"*” NM_021913.£20 E¢
Jong-Il Kim,"#** Jin-Hyoung Kang,'®'? and Young Tae Kim'”%"'2 axcvere o p ) Y ver
Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 110-799, Korea; “Department
of Biochemistry, Seoul National University College of Medicine, Seoul 110-799, Korea; jDE[JlmmErvl of Biomedical Sciences, Seoul SCAF11- E1E2
ScAFtt:  scarnt i) e FocFRA

National University Graduate School, Seoul 110-799, Korea; *“Macrogen Inc., Seoul 153-781, Korea; *Psoma Therapeutics Inc., Seoul
153-781, Korea; °Department of Internal Medicine, Seoul National University Hospital, Seoul 110-799, Korea; ”Cancer Research
Institute, Seoul National University College of Medicine, Seoul 110-799, Korea; ®Division of Medical Oncology, Research Institute
of Medical Science, The Catholic University of Korea, Seoul 137-040, Korea; *Department of Thoracic and Cardiovascular Surgery,
Seoul National University Hospital, Seoul 110-799, Korea; '°Division of Medical Oncology, Seoul St. Mary's Hospital, The Catholic
University of Korea, Seoul 137-040, Korea

All cancers harbor molecular alterations in their genomes. The transcriptional consequences of these somatic mutations
have notyet e A sequencing study of
lung adenocarcinoma, demonstrating its power to identify somatic i
as gene fusions, altemative splicing events, and expression outliers. Our results reveal the genetic basis of 200 lung
adenocarcinomas in Koreans including deep characteriztion of 87 surgica specimens by transcriprome sequencing. We
KRAS, NRAS, BRAF, PIKGCA, MET, and CTNNI. Candldals
fw novel driver mutations were also Adennfed in genes newly implicated in lung adenocarcinoma such as LMTKZ, ARI
NOTCH2, and SMARCA%. We h of which tyrosine kinases involving ALK, RET, ROSI,
FGFRZ, AXL, and PDGFRA. Among I7 recurrent aliernative splicing events, we identified exon 14 skipping in the proto-
oncogene MET as highly likely to be a cancer driver. The number of somatic mutations and expression outlers varied
markedl i ing hi patients. Wei i
blocks within which gene expression levels were consstently increased or decreased that could be explained by copy
numlm al(erauons in samples. We also found an association between lymph node metastasis and somatic mutations in
e fi s broaden our understanding of lung adenocarcinoma and may also lead to new diagnostic and
theraneunt approxches

400

p=0.001079
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[Supplemental material s available for this article.]

The number of somatic mutations

humans, aswell  al b 1

Never-smoker Smoker

L
as the leading cause of cancer-related death worldwide (Jemal et al,
2011). Although diagnosis at an early stage is increasing with the
introduction of low-dose computerized tomography screening,
lung cance i sl 3 devastatng dicise that has  very poor
prognosis (Aberle et al. 2011). Lung cancer can be classified based
with
common type (Travis et al. 2005). Recently, deeper understanding
of the major genctic leratons an signalingpatvays involved
has suggested a n of lung adenocarcinoma based
on underlying rver mutations. Cancer cls with these genetic
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such changes (Haber and Settleman 2007). Currently, approxi-
mately 10 driver genes have been discovered in lung adenocard-
noma (Pao and Girard 2011). Clinical trials using new chemo-
therapeutic agents targeting such alterations have demonstrated
remarkable improvements in patient outcome, for example
gefitinib (Mok et al. 2009; Maemondo et al. 2010) and crizotinib
(Kwak et al. 2010) for lung adenocarcinoma harboring EGFR mu-
tations and EML4-ALK (Soda etal. 2007) fusion, respectively. More
recently, not nnlv point mutations but bo yrosin kinase gene
fusions, such as K} ied as driver mutations (Ju
et al. 2012) l\ewnhele\\, we still do not know the molecular
drivers of ~40% of lung adenocarcinomas (Pao and Girard 2011).
Interestingly, the frequencies of some driver mutations have
been shown to be significantly different between ethnic groups
(Shigematsu and Gazdar 2006), and therefore comprehensive
cancer genome studies in a range of human populations will help
to find new molecular alterations that can be targeted in treat-
ments of lung cancer.
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Understanding mutational processes from mutational

spectrum: a blind-source separation problem
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SBS Signature 1 and Signature 2
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Catologue Of Somatic Mutations In Cancer

Mutational Signatures (v3.1 - June 2020)

Mutational signatures as a collection of operative mutational processes

Introduction Mutational processes from different aetiologies are active during the course of cancer development. They can
Somatic mutations are present in all cells of the haman bedy and eccsr throughont life, They are the be identified using mutational signatures, due to their unique mutational pattern and specific activity on the
consequence of multiple mutational processes, including the intrinsic slight infidelity of the DNA replication —

machinery, or mutagen 5, enzymatic ification of DNA and defective This is illustrated in the figure below using a framework of 6 classes of single base substitutions, and three
DNA repair. Different mutational processes generate unique combinations of mutation types, termed distinct mutational processes, whose respective strengths vary throughout a patient's life. At the beginning, all
"Mutational Signatures”. mutations were due to the activity of the endogenous mutational process. As time progresses, the other

In the past few years, large-scale analyses have revealed many mutational signatures across the spectrum of human processes g&t b ated andithe putationalispectumict the canceggenome coptinuestio changes

cancer types, including the latest effort by the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) % Network
(Alexandrov, L.B. et al., 2020 %) using data from more than 23,000 cancer patients.

Signature-based websites

As the number of mutational signatures and variant classes considered has increased, the need for a curated census of
signatures has become apparent. Here, we deliver such a resource by providing a comprehensive overview of the key
information known, suspected or widely discussed in the scientific literature for each of the identified mutational
signatures on a dedicated website.

This summary includes the mutational profile, proposed aetiology and tissue distribution of each signature, as well as
potential associations with other mutational signatures and how the signature has changed during iterations of analysis. B s meee)
Currently, three different variant classes are considered, resulting in the following sets of mutational signatures. I

Single Base Substitution (SBS) | Doublet Base Substitution (DBS) | Small Insertion and Deletion (1D)
Signatures Signatures Signatures TS
- N

At
G

Versions Bioinformatic tools i omm) spactan
Mutational signatures version 3 was released as part of The current set of mutational signatures has been

COSMIC release v89 (May 2019) and updated to version extracted using SigProfiler, a compilation of publicly

3.1 in COSMIC release v91 (June 2020). The version 3.1 available bioinformatic tools addressing all the steps Time

update expands and improves upon the version 2 needed for signature identification. SigProfiler =
signatures (March 2015) that were part of earlier functionalities include mutation matrix generation from t
COSMIC releases and can still be consulted raw data and signature extraction, among others. l

Mutational Signatures __SigProfiler
Version 2 Bioinformatic Tools
l Nomber of
mutations

COSMIC Projects Documentation Contact

About cosmMiC Help cosmic@sanger.ac.uk
Login Cell Lines. Licensing

Register CosMIC Terms & Conditions




49 +5 biologic signatures in SBS mutations (v3)

© & httpsy//cancer.sanger.ac.uk/cosmic/signatures/SBS/in B &%
Cotatogue OfSomatc Muttions I Canee
Mutational Signatures (v3.1 - June 2020)
atonal Signatures | Single Base Substtuion (588) | Doublet Base Substittion (0BS) | Small Insertion and Deletion (10) | Mutatonal Signatures rofiler
Wome Signatures Signatures Signatures Version2 Bloinformatic Tools
ingle Base Substitution (SBS) Signatures
Single base substitutions (SBS), also known as single nuckeotide variants, are defined as a replacement of a STt
certain nucleotide base. Considering the pyrimidines of the Watson-Crick base pairs, there are only six different
possible substitutions: C>A, C>G, C>T, T>A, T>C, and T>G. These SBS ciasses can be further expanded WEh 2 few exceptions,the Sgnatures were xtrcted sing Sigeraie (as desrbed i Alexandioy 0.t al. 2020 2 from the 2,780 whole-
T O genome variant calls produced by the ICGC/TCGA Pan Cancer Analysis of Whole G WG) & Network. The stability and reproducbilty
of the sigratures were sssessed on somatic mutacns fom an addtonal 1,665 iR ae=Er RO AV Yt e
Current SBS signatures have been identified using 96 different contexts, considering not only the mutated base, referer\ces for original sources are available from synapse.org ID s
but also the bases immediately 5’ and 3'.
The COSMIC v3 signatures are available in numerical form in sy #, and attributions of the signatures to mutations in tumors are
Click on any signature below to learn more about its details. available in 5yn11804040 % and . The COSMIC v3.1 signatures can be downloaded here.
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Signatures by etiology
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Signature 1 and 5: basal, cellular intrinsic mutagenesis
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Validated Mutational Signatures

(1) SBS Signature 1: 5mC deamination
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Cancer types:

Signature 1 has been found in all cancer types and in most cancer samples.

Proposed etiology:

Signature 1 is the result of an endogenous mutational process initiated by spontaneous deamination
of 5-methylcytosine.

Additional mutational features:

Signature 1 is associated with small numbers of small insertions and deletions in most tissue types.
Comments:

The number of Signature 1 mutations correlates with age of cancer diagnosis.

-16-



(1) SBS Signature 5: unknown mechanism
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Cancer types:

Signature 5 has been found in all cancer types and most cancer samples.

Proposed etiology:

The aetiology of Signature 5 is unknown.

Additional mutational features:

Signature 5 exhibits transcriptional strand bias for T>C substitutions at ApTpN context.

(1) SBS Signatures 1, 5; clock-like property
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Alexandrov L et al., Nature Genet (2015)
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Validated Mutational Signatures

(2) Signature 4: due to direct smoke exposure
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(2) SBS Signature 4: tobacco smoking
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3

Signature of benzo[a]pyrene exposure in vitro

Mutation Type
Prabability

||" ||||||I|||_|I|_|_|II||II|.II.
SH35HEREd LEEETE

=

Cancer types:

Signature 4 has been found in head and neck cancer, liver cancer, lung adenocarcinoma,

lung squamous carcinoma, small cell lung carcinoma, and esophageal cancer.

Proposed etiology:

Signature 4 is associated with smoking and its profile is similar to the mutational pattern observed
in experimental systems exposed to tobacco carcinogens (e.g., benzo[a]pyrene).

Signature 4 is likely due to tobacco mutagens.

Additional mutational features:

Signature 4 exhibits transcriptional strand bias for C>A mutations, compatible with the notion that
damage to guanine is repaired by transcription-coupled nucleotide excision repair. Signature 4 is also
associated with CC>AA dinucleotide substitutions.
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(2) SBS Signature 4: mutational burden and s
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Cancer types:

Signature 7 has been found predominantly in skin cancers and in cancers of the lip categorized as
head and neck or oral squamous cancers.

Proposed etiology:

Based on its prevalence in ultraviolet exposed areas and the similarity of the mutational pattern to thg
observed in experimental systems exposed to ultraviolet light Signature 7 is likely due to

ultraviolet light exposure.

Additional mutational features:

Signature 7 is associated with large numbers of CC>TT dinucleotide mutations at dipyrimidines.
Additionally, Signature 7 exhibits a strong transcriptional strand-bias indicating that mutations occur a
pyrimidines (viz., by formation of pyrimidine-pyrimidine photodimers) and these mutations are being
repaired by transcription-coupled nucleotide excision repair.
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(4) SBS Signatures 2 and 13: APOBEC-mediated mutagenesis
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(4) SBS Signatures 2 and 13: APOBEC-mediated mutagenesis
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Cancer types:
Signature 2 has been found in 22 cancer types. Dominant processes in cervical and bladder cancers.

Proposed etiology:

Signature 2 has been attributed to activity of the AID/APOBEC family of cytidine deaminases.

On the basis of similarities in the sequence context of cytosine mutations caused by APOBEC enzymes
in experimental systems, a role for APOBEC1, APOBEC3A and/or APOBEC3B in human cancer appears

more Iikeli than for other members of the famili.
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APOBEC-mediated mutations
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Activated in the late branch in lung cancers.

Activated in many cancer types
Y yp (Episodically activating?)

including cervical, bladder, breast and lung cancers.

(5) Signature 11: temozolomide-driven
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(5) SBS Signature 11: alkylating agent
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Cancer types:

Signature 11 has been found in melanoma and glioblastoma.
Proposed etiology:

Signature 11 exhibits a mutational pattern resembling that of alkylating agents. Patient histories have revealed
an association between treatments with the alkylating agent temozolomide and Signature 11 mutations.
Additional mutational features:

Signature 11 exhibits a strong transcriptional strand-bias for C>T substitutions indicating
that mutations occur on guanine and that these mutations are effectively repaired by
transcription-coupled nucleotide excision repair.

Bitunctional
alkylating agents
can cause
intrastrand linking
and cross-linking

(6) SBS Signature 22: aristolochic acid driven
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(6) SBS Signature 22: aristolochic acids
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Cancer types: I oo 7’_
Signature 22 has been found in urothelial (renal pelvis) carcinoma and liver cancers. £ o
Proposed aetiology: 2
Signature 22 has been found in cancer samples with known exposures to aristolochic acid. 2
Additionally, the pattern of mutations exhibited by the signature is consistent with the one R R T
previous observed in experimental systems exposed to aristolochic acid. Ts4 493 185 119 3w

Additional mutational features:
Signature 22 exhibits a very strong transcriptional strand bias for T>A mutations indicating adenine damage
that is being repaired by transcription-coupled nucleotide excision repair.

Comments:
Signature 22 has a very high mutational burden in urothelial carcinoma; however, its mutational burden is much lower in liver cancers.

(6) SBS signature 22: aristolochic acids

OCHj

Aristolochia clematitis
(FlE=2g=, s50FE, 4=8)

https://www.accessdata.fda.gov/cms _ia/importalert 141.html
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(7) SBS Signature 3: HR-based DNA repair
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(7) SBS Signature 3: HR-based DNA repair
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SBS3 genome rearrangements due to abnormal double strand break

£ repair but also in the form of this base substitution signature.
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E L 4 = 7Z 3 _?Z — -‘,i e — ol o~ | SBS3 is strongly associated with germline and somatic BRCA1
2 71’ 7 ?C E - B N and BRCA2 mutations and BRCA1 promoter methylation in
£ o : L . . .
: " - breast, pancreatic, and ovarian cancers. In pancreatic cancer,
=
L om . responders to platinum therapy usually exhibit SBS3 mutations.
£
£om Together with associated indel and rearrangement signatures,

SBS3 has been proposed as a predictor of defective
B S e s homologc?us recor.n!;)lnatlf)n—bas.ed repair and thus of response
to therapies exploiting this repair defect.
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O "B A| mutational signature
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Tools for extracting mutational signatures

Inferring de novo signatures

Alexandrov, MatLab (Nature 2013)

EMu (Genome Biology 2013)

Maftools (Genome Res 2018)
MutationalPatterns (Genome Med 2018)
MutSpec (BMC Bioinformatics 2016)
SigFit (BioRxiv 2020)

SigMiner (medRxiv 2020)
SignatureAnalyzer (Nature Commun 2015)
SignatureToolsLib (Nat Cancer 2020)
SigneR (Bioinformatics 2017)
SomaticSignatures (Bioinformatics 2015)
SigProfiler (COSMIC)

(1) Sigprofilers

Fitting known signatures

deconsructSigs (Genome Biology 2016)
SignatureEstimation (Bioinformatics 2018)
YAPSA (R Package v 1.16.0)

Web interfaces

MutaGene (NAR 2017)
mSignatureDB (NAR 2018)

MusSiCa (BMC Bioinformatics 2018)
Mutalisk (VAR 2018)

< cC @ © & https//cancersanger.ac.uk/cosmic/signatures

% Catalogue OF Somatic Mutations In Cancer

Mutational Signatures (v3.1 - June 2020)

Introduction

B 0% @ ¥rin @D ® &% =

Somatic mutations are present in all cells of the human body and occur throughout life.
They are the consequence of muitiple mutational processes, including the intrinsic slight
infidelity of the DNA r icati inery, or

exposures, enzymatic modification of DNA and defective DNA repair. Different mutational
processes g unique combinations of jon types, termed "Mutational
Signatures”.

In the past few years, large-scale analyses have revealed many mutational signatures across the
spectrum of human cancer types, induding the latest effort by the ICGC/TCGA Pan-Cancer Analysis
of Whole Genomes (PCAWG) # Network (Alexandrov, L.B. et al., 2020 %) using data from more than
23,000 cancer patients

Signature-based websites

As the number of mutational signatures and variant classes considered has increased, the need for
a curated census of signatures has become apparent. Here, we deliver such a resource by providing
a comprehensive overview of the key information known, suspected or widely discussed in the
scientific literature for each of the identified mutational signatures on a dedicated website

This summary includes the mutational profile, proposed aetiology and tissue distribution of each
signature, as well as potential associations with other mutational signatures and how the signature
has changed during iterations of analysis.

Currently, three different variant classes are considered, resulting in the following sets of mutational
signatures.

Single Base Substitution (SBS) | Doublet Base Substitution (DBS)
Signatures Signatures

Small Insertion and Deletion (ID)
Signatures

Versions Bioinformatic tools

Mutational signatures version 3 was released as
part of COSMIC release v89 (May 2019) and
updated to version 3.1 in COSMIC release v91
(June 2020). The version 3.1 update expands
and improves upon the version 2 signatures
(March 2015) that were part of earlier COSMIC
releases and can still be consulted.

Mut

ational Signatures
Version 2

The current set of mutational signatures has
been extracted using SigProfiler, a compilation
of publicly available bicinformatic tools
addressing all the steps needed for signature
identification. SigProfiler functionalities include
mutation matrix generation from raw data and
signature extraction, among others.

sigProfiler
Bioinformatic Tools

Mutational si as a coll of < o]

Mutational processes from different aetiologies are active during the course of cancer development. They
can be identified using mutational signatures, due to their unique mutational pattern and specific activity on
the genome.

This is illustrated in the figure below using a framework of 6 classes of single base substitutions, and three
distinct mutational processes, whose respective strengths vary throughout a patient’s life. At the
beginning, all mutations were due to the activity of the endogenous mutational process. As time
progresses, the other processes get activated and the mutational spectrum of the cancer genome

continues to change,
=1 1
ot
s Strong exogenous.
¢ mutational process
6 Tobacco smoking I

DR ]
L

Mutational spectrum
of final cancer genome.

Time

I ‘

Number of
l mutations
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(1) Sigprofiler tools
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% Catalogue OFf Somatic Mutations In Cancer

Mutational Signatures (v3.1 - June 2020)

U a https://cancer.sanger.ac.uk/cosmic/signatures/sigprofiler.tt

al Signatures
Version 2

sigProfiler
Bioinformatic Tools

Mut; al Signatures | Single Base Substitution (SBS) | Doublet Base Substitution (DBS) | Small Insertion and Deletion (ID) | Mut:
Home Signatures Signatures Signatures

SigProfiler Bioinformatic Tools

sigprofiler provides a comprehensive and integrated suite of
bicinformatic tools for performing mutational signature analysis.
The software covers the analytical lifecycle starting with the
generation of the mutational matrix and finishing with signature
extraction, as well as supporting functionality for plotting and
simulation.

Hover over any of the logos to learn more about each of our
software tools, including the GitHub repository, a wiki page
describing how to use the tool and the corresponding publication.
All SigProfiler software is available both in Python and R
environments.

SIGPROFILER |

MatrixGenerator

gl\ll@n@@@\l\?m\\!I,EIIE@‘w\

ting

§|\u@l@@@m€m||L||E|@ "Immumu

Ext ractor

§I\II@|@@@\IFIIHIILIIE@ N

Simulat OI'

(1-1) Sigprofiler matrix generator
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G>T CGT > CTT GCGTA > GCTTA Purine (RevComp)
B
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3’ -CAATGACGTA-5 3’ -CAATTTCGTA-5
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CT > AA ACTG > AARG
AG > TT CAGT > CTTT
Cc
’ ~CGTAATAATAATAAGC-3" ’ ~CGTAATAATAAGC-3' Deletion
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Deletion 3:Del:R:4
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(input)
VCF/MAF

(output)

Matrices with

Sequencing context
Transcriptional strand bias

Bergstrom et al., BMC Genomics (2019)




(1-2) Sigprofiler Extractor

OSFHOME » Search  Support  Donate Sign Up Sign In

SigProfilerExtractor ~ Files QWUIIMM Analytics  Registrations
A Home Toggleview: JRCUN Compare

= Menu < @ View Wiki Version: (Current) Uma Mahto: 2019-06-13 21:10:02+00:00 UTC |+

- B Project Wiki Pages

[3 1. Installation

SigProfilerExtractor

SigProfilerGenerator is a python framework that allows de novo extraction of mutational signatures from data generated in a matrix
@ 2. Quick Start Example format. The tool identifies the number of operative mutational signatures, their activities in each sample, and the probability for each
signature to cause a specific mutation type in a cancer sample. The tool makes use of SigProfilerMatrixGenerator and

O 3. Using the Tool - Input SigProfilerPlotting, seamlessly integrating with other SigProfiler tools.

[ 4. Using the Tool - Output

[ 5. Output - All Solutions Citation
[ 6. Output - Suggested Solution In progress.
License

This software and its documentation are copyright 2018 as a part of the SigProfiler project. The SigProfilerExtractor framework is free
software and is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Contact

All SigProfilerGenerator related queries or bug reports should be directed to S M Ashiqul Islam (Mishu) at moislam@ucsd.edu.

< >

Somatic mutation matrix = NMF =» model selection (# of signatures and stability)
=>» Detection of de novo mutational signatures =» comparison with known signatures

Tools for extracting mutational signatures

Inferring de novo signatures Fitting known signatures

Alexandrov, MatLab (Nature 2013) deconsructSigs (Genome Biology 2016)
EMu (Genome Biology 2013) SignatureEstimation (Bioinformatics 2018)
Maftools (Genome Res 2018) YAPSA (R Package v 1.16.0)
MutationalPatterns (Genome Med 2018)
MutSpec (BMC Bioinformatics 2016)
SigFit (BioRxiv 2020)

SigMiner (medRxiv 2020)
SignatureAnalyzer (Nature Commun 2015)
SignatureToolsLib (Nat Cancer 2020) MutaGene (NAR 2017)
SigneR (Bioinformatics 2017) mSignatureDB (NAR 2018)

SomaticSignatures (Bioinformatics 2015) MuSiC:a (BMC Bioinformatics 2018)
SigProfiler (COSMIC) Mutalisk (NAR 2018)

Web interfaces
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(2) deconstructSigs
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Rosenthal et al., Genome Biology (2016)

Tools for extracting mutational signatures

Inferring de novo signatures

Alexandrov, MatLab (Nature 2013)

EMu (Genome Biology 2013)

Maftools (Genome Res 2018)
MutationalPatterns (Genome Med 2018)
MutSpec (BMC Bioinformatics 2016)
SigFit (BioRxiv 2020)

SigMiner (medRxiv 2020)
SignatureAnalyzer (Nature Commun 2015)
SignatureToolsLib (Nat Cancer 2020)
SigneR (Bioinformatics 2017)
SomaticSignatures (Bioinformatics 2015)
SigProfiler (COSMIC)

Fitting known signatures

deconsructSigs (Genome Biology 2016)
SignatureEstimation (Bioinformatics 2018)
YAPSA (R Package v 1.16.0)

Web interfaces

MutaGene (NAR 2017)
mSignatureDB (NAR 2018)

MuSiCa (BMC Bioinformatics 2018)
Mutalisk (NAR 2018)
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(3) Web interfaces: Mutalisk

@ © % mutaliskorg AR 4 v ¢

Home Analyze Tutorial Contact

(%) mutalisk

About the project

Mutalisk is a free and public web service program that enables comprehensive analysis of somatic DNA mutations with genome regulation elements and
DNA sequence contexts.

Somatic DNA mutations are consequences of various non-random biological processes in somatic cells such as DNA repair and other
endogenous /exogenous mutational processes. These mutations are not uniformly distributed genome-wide, but enriched in certain genomic loci, specific
DNA sequence, and,/or epigenome contexts according to the mutational processes.

Through elegant graphics and calculated statistics, this tool is designed to help researchers analyze the enrichment of somatic mutations and view potential
causes of mutation rate variation for a list of somatic mutations. The input of the program is the standard vef file, obtained from whole-genome/exome
sequencing of single or multiple samples. Mutalisk performs the following analyses based on the mutations st

A. Presence of regional hypermutation (Kataegis)
- Standard rainfall is introduced
B. Systematic decomposition of mutational signatures (COSMIC mutational signatures)
~ Linear regression is used for the signature decomposition. Overfitting is controlled using Bayesian Information Criterion (BIC)
C. Associations between somatic mutation density and comprehensive genomic, epigenomic and transcriptional features including
- Transcriptional gene annotation
- Potential enrichments with more than ~10 different genomic elements such as replication timing and histone modifications (ENCODE project dataset)

MUTALISK

Input Analysis/Output Results

ategis @ utationai signatures
hesseralad
i Dl

[« JEvw— »

AR

Somaic ACGT Downloadable i i i
Mutalisk: a web-based somatic MUTation
onaepcaton Timng | (@0 wstoe woancatons AnaLylIS toolKit for genomic, transcriptior]
el :} and epigenomic signatures 9
i s g

Lee JK et al., NAR 2018

(3) Workflow in Mutalisk

Sinput X Processing Coutput
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(3) Workflow in Mutalisk (2)
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(3) Input for Mutalisk

(9) mutalisk

MUTATION ANALYSIS TOOLKIT

1. Genome assembly

‘ GRCh37/hg19 [Homo sapiens (human)] v|

2. Input file

The input file format of this tool is VCF file.
You can select multiple files (max 300).

The total size of mutliple files should be less
than 1GB.

+ Add Files l

® No Files Selected

m The following shows an example of how to run Mutalisk using the sample data.

3. Mutational signatures

3-1. MLE method

User Selection v

3-2. Cancer type

This site is optimized for Chrome.

4. Genomic & epigenomic annotation

Localized hypermutation (kataegis)
Transcriptional strand bias
GC content

[ ENCODE dataset reference cell ]

3-3. Select the mutational signatures.

[ Signature] [signature2 [ Signature3
[ Signature4 [signatures [ Signature6
[ signature? [signatures [ signature9
[signature10 [Signaturel1  [JSignaturel2
[signature13 [Signaturel4 [JSignaturel5
[signature16 [Signature17 [JSignaturel8

[ signature19
[ Signature22
[ Signature25
[ Signature28

[signature20
[signature23
[ signature26
[ signature29

[ Signature21
[ Signature24
[ Signature27
[ Signature30

Select All | Deselect All

Reference to the ional si es:

* Signatures of Mutational Processes in Human Cancer

» PCAWG - SigProfiler (provisional)

» Custom signatures
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[GM12878 (Blood - Normal) -

DNA replication timing
DNasel hypersensitivity
Histone modification

(NA) : Not Available

Reference to the genomic/epigenomic data:
% The ENCODE Project & UCSC genome browser




(3) Output in Mutalisk (1)

C>A C>G C>T T>A T>C T>G
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(3) Output in Mutalisk (2)
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Genome QC with mutational signatures

Amplification/sequencing artifacts make unique signatures

© & httpsy//cancersanger.ac.uk/cosmic/signatures/SBS/index.tt

Cotalogue Of Somatic Mutations In Cancer

Mutational Signatures (v3.1 - June 2020)

Single Base Substitution (585) | Doublet Base substitution (DBs) | Small Insertion and Deletion (10) | Mutational Signatures Profiler
signatures. Signatures Signatures. Version 2 formatic Tools

Single Base Substitution (SBS) Signatures

Single base substitutions (SBS), also known as single nudleotide variants, are defined as a replacement of a

Signature extraction methods
certain nudeotide base. Considering the pyrimidines of the Watson-Crick base pairs, there are only six different

possible substitutions: C>A, C>G, C>T, T>A, T>C, and T>G. These SBS dasses can be further expanded With a few exceptions, the signatures were extracted using SigProfiler (as described in Alexandrov, LB et al, 2020 %) from the 2,780 whole-
considering the nucleotide context. genome variant calls produced by the ICGC/TCGA Pan Cancer Analysis of Whole Genomes (PCAWG) # Network. The stability and reproducibiity

of the signatures were assessed on somatic mutations from an additional 1,865 whole genomes and 19,184 exomes. Allinput data and
Current $85 signatures have been identified using 96 different contexts, considering not only the mutated base,  references for original sources are available from synapse.org ID syn11801889 .

but also the bases immediately 5 and

: The COSMIC v3 signatures are available in numerical form in syn12009743 %, and attributions of the signatures to mutations in tumors are

Click on any signature below to learn more about Its detalls. avalable in syn11804040 ? and syn11804058 2. The COSMIC v3.1 signatures can be downloaded here.
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SBS45, asignature of 8-o0xoG artifact
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A typical pipeline for cancer genome analyses

Whole-Exome or
Whole-Genome Sequencing

Alignment

bwa-mem

1

Tumor Normal

Tumor/normal
Sequencing Artifact Pair BAM Files
| | | 4
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MuTect2, Muse efc
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ot : e e

b Artifactual
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Conventional Manual
Hard-Filtering Pipeline

Workflow in FIREVAT, a software for filtering artifacts

Kim et al., Genome Medicine 2019
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Filtering mutations using FIREVAT
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