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Noncoding variants and deep learning
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Curriculum Vitae

Speaker Name: Hyunju Lee, Ph.D.

» Personal Info

Name Hyunju Lee
Title Professor
Affiliation Gwangju Institute of Science and Technology

» Contact Information

Address 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005
Email hyunjulee@gist.ac.kr

Phone Number 062-715-2213

Research interest : Bioinformatics, Machine learning, and Text Mining

Educational Experience

1997 B.S. in Computer Science, KAIST, South Korea
1999 M.A. in Computer Engineering, Seoul National University, South Korea
2006 Ph.D. in Computer Science, University of Southern California, USA

Professional Experience

2006-2007 Post-doc Research Fellow, Brigham and Women's Hospital and Harvard Medical
School, USA
2007- Assistant, Associate, Full Professor, Electrical Engineering and Computer Science,

Gwangju Institute of Science and Technology

Selected Publications (5 maximum)

1. Ho Jang and Hyunju Lee, Multiresolution correction of GC bias and application to identification
of copy number alterations, Bioinformatics, 35(20), 2019.

2. Jeongkyun Kim, Jung-jae Kim, and Hyunju Lee, PLoS Computational Biology, DigChem:
Identification of disease-gene-chemical relationships from Medline abstracts,15(5), 2019.

3. Jihee Soh, Hyejin Cho, Chan-Hun Choi, and Hyunju Lee, Identification and Characterization of
MicroRNAs Associated with Somatic Copy Number Alterations in Cancer, Cancers, 10(12):475,
2018.

4. Bayarbaatar Amgalan and Hyunju Lee, DEOD: uncovering dominant effects of cancer-driver
genes based on a partial covariance selection method, Bioinformatics, 31(15), 2015.

5. Daeyong Jin and Hyunju Lee, A computational approach to identifying gene-microRNA modules

in cancer PLoS Computational Biology,11(1), 2015.


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007022
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007022
https://academic.oup.com/bioinformatics/article-abstract/31/15/2452/188317
https://academic.oup.com/bioinformatics/article-abstract/31/15/2452/188317
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004042
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004042

KSBi-BIML
2021

Noncoding Variants and Deep Learning

N
N
r
—°.|-'
I'

A
=
=
=
r

£ 20| 42 HIURYRYS

2021 3 4F 23}0 Aoi2 2O B

22 ole|e| CH2 B2 ALEE 4 o128 2YSHA UL
al o

Ct. =Y 5’“°E HHE 3 IS O
AMEL oL A, B, MEe + SL T




Contents

Introduction to noncoding variants

Computational methods to prioritize noncoding variants

Genomic and epigenomic information

Deep learning methods

Genomic variants

* Protein-coding regions make up around 1% of the human genome

* ENCODE suggests (Nature 489, 57-74 (2012))
*  82% of the human genome was functionally important having biochemical activity.

* ~20 % of the genome is associated with DNase hypersensitivity or transcription
factor binding (common features for identifying regulatory region)

* How coding and noncoding variation can impact gene function

Variant Location Transcript Map Transcript Product Transcript description Potential Outcome
Coding v /—\/_/ Synonymous/ Homeostasis/
; . b - f— Ve i
(standard Interpretation) P Missense/ Altered Prodl_Jcl/
Nonsense Loss of function
—
——
Promoter/Enhancer/ v r\’—’fﬁ Over/ Ab ¢ . "
Looping/cis-regulatory InCRNA RSN Under expression errant expression patterns
e o hﬁ_/f—q/
/_/
/_/
Splice Donor/Acceptor O : % _¢. — Skipped exon/ Altered product
Branchpoint A 8\:——”:/// Retained intron Nonsense Mediated Decay

4
Gloss and Dinger Experimental & Molecular Medicine (2018) 50:97
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Noncoding variants

* Mutations in noncoding variants can lead to gain or loss of transcription

A Loss or gain due to o ol pal:tt @
Ba Gain of motif

mutations
%\/ Widtype e
R Promoter Gene CDS

InpartB J
l mRN
InpartsD and E

2
v‘g 11
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=N T
1. 2 38 % 5 ©
Position Mutated CGGARG —

i

| & e nRNA AR 1RNA Bb Loss of motif
Post-transcriptional C Wild type TATTAT)—&H:}—
regulation ?

D CDSmRNA 135 7 9 111315
Mutated —TAT@TAT— "H ]

WS, Position

Mutations in miRNA j

>

\\
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l Transcription

\\

Bits
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0

5

binding sites

S
S
S

Increased gene expression

Nature Reviews Genetics volume 17, pages93-108(2016)

Coding vs. noncoding variants

* Prediction of the effect of a coding variant on protein

function
* ‘sorting tolerant from intolerant’ (SIFT) algorithm
* ‘polymorphism phenotyping’ (PolyPhen) tool
* Protein sequences have been highly conserved throughout evolution
* Based on a multiple-sequence alighnment

* Regulatory elements
* Conservation is a less important signal when interpreting variants
» Effects of regulatory variants have quantitative rather than qualitative
effects on gene expression

* Same variant may have a larger or smaller effect in different tissues, at
different developmental stages and even in different individuals.

Nature Methods volume 11, pages294-296(2014) °
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Introduction to noncoding variants

Computational methods to prioritize noncoding variants

Genomic and epigenomic information

Deep learning methods

Computational methods to prioritize non-
coding variants with functional effects

Method used to build model

CADD
GWAVA
DeepSEA
DanQ

DeFine

2014
2014
2015
2016
2018

Support vector machine
Random forest algorithm
Deep learning, CNN
Deep learning, CNN, RNN
Deep learning, CNN




Machine learning model (GWAVA)

e GWAVA: Genome-wide annotation of variants

* Prioritization of noncoding variants by integrating various genomic and
epigenomic annotations

* https://www.sanger.ac.uk/tool/gwava/

Various . o
genomic and Modified annary cI§SS|f|Fat|on
epigenomic Random Forest classifier (Disease-implicated SNVs
information vs. control SNVs)

(SNVs : single-nucleotide variants)

Nature Methods volume 11, pages294—-296(2014)

Machine learning model (GWAVA)

* Disease-implicated SNVs

* All variations annotated as ‘regulatory mutations’ from the public release
of the Human Gene Mutation database (HGMD)

e Control sets

* Common (minor allele frequency 21%) SNVs from the 1000
Genomes Project (1KG)

* First set: a random selection of SNVs from across the genome in
order to sample overall background.
* Second set: matched for distance to the nearest TSS genome-wide.

* HGMD variants are not distributed randomly across the genome; 75% lie within
a 2 kilobase (kb) window around an annotated transcription start site (TSS)

* Third set: all 1KG variants in the 1 kb surrounding each of the
HGMD variants.

Nature Methods volume 11, pages294—-296(2014)
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Machine learning model (GWAVA)

* Genomic and epigenomic annotations
* Open chromatin: DNase-seq data from ENCODE

* Transcription factor binding: ChIP-seq peak calls for 124 TFs from
ENCODE

* Histone modifications: ChIP-seq peak calls for 12 modifications from
ENCODE

* RNA polymerase binding: ChiP-seq peak calls from ENCODE
* CpG islands: Predictions from Ensembl

* Genome segmentation: discrete states such as transcription start sites,
gene ends, enhancers, transcriptional regulator CTCF-binding regions
and repressed regions

* Conservation: Genomic evolutionary rate profiling (GERP) scores from
mammalian alighments

* Human variation: Variants and allele frequencies 1000 Genomes
Project phase 1 data

* Genic context: distance from any base annotated as exonic, intronic,
coding sequence, 5 or 3’ untranslated region, splice site, or start or
stop codon in any transcript

Nature Methods volume 11, pages294—-296(2014)

Machine learning model (GWAVA)

* Genomic and epigenomic annotations

* A large matrix with a row for each variant locus and a
column for each possible annotation.

* The column type depending on the annotation class

(i) the number of cell lines in which the variant locus overlaps
some annotation, such as DNase | hypersensitive sites and
ChIPseq peaks

(ii) a present-absent binary flag

* Ex) whether this region is ever in an annotated intron
(iii) a continuous value for genome-wide annotations

* Ex) conservation and distance to the nearest TSS

A part of example annotations

chr | end start | DNase | E2F1 | H3K27ac |H3K27me3 Cpi—;"" gerp |tss_dist| .. 7ss  [inTrRoN| stor |UTR| .

rs111626726 | chr3 | 1.5E+08 | 1.5E+08 12 0 12 1 1 3.18 447 6 1 0 0

Nature Methods volume 11, pages294—-296(2014)
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Machine learning model (GWAVA)

* A modified version of the random forest algorithm

* Three classifiers to discriminate between the disease variants and
variants from each of the three control sets

1.0 1

0.8 4

4
o

1
>

True positive rate

B Unmatched (AUC = 0.97)
0.2 4 @ TSS (AUC = 0.88)

@ Region (AUC = 0.71)
Chance

0 0.2 0.4 0.6 0.8 10
False positive rate

Nature Methods volume 11, pages294-296(2014) >
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Chromosomes are composed of DNA tightly-wound
around histones

1

7
At the simplest level, chromatin
is a double-stranded helical DNA double helix
structure of DNA.
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= -// ,// ‘//' . Each nuclecsome consists of

L eight histone proteins around
= g which the DNA wraps 1.65 times,

to form nucleosomes. Nucleosome core of 2

=/
DNA is complexed with histones I

eight histone molecules

A chromatosome consists
of a nucleosome plus the

H1 histone
(&) d’ H1 histone.
~ ... that forms loops averaging
300 nm in length. Ie | @
11 nm = Chromatosome

©:
The nucleosomes
fold up to produce
a 30-nm fiber...

—(

300 nm

30 nm

250-nm-wide fiber

2, 8 ig;

& 1400
© 2013 Nature Education Adapted The 300-nerrc|' ﬁbzr: are 5 Tight coiling of the 250-nm om
X o o compressed and folded to fiber produces the chromatid
from Pierce, Benjamin. Genetics: A produce a 250-nm-wide fiber. of a chromosome,
Conceptual Approach, 2nd ed.

15
Histone and transcription
Nucleosomes
Co-actator complex \ Q/—
Linker DNA Al— . y ﬁms @ P
Nature Reviews | Genetics

Histone proteins need to be modified and DNA needs to be
released for transcription to take place.

16




Epigenetic mechanisms

EPIGENETIC MECHANISMS HEALTH ENDPOINTS
are aff by these fi and pr

« Cancer
Development (in utero, childhocod) = Autocimmune disease
Er I « Mental disorders

* Diabetes

-
-
-
- EPIGENETIC
‘ FACTOR
CHROMOSOME /

\

\

h

- DNA methylation

Methyl group (an epigenetic factor found
in some dietary sources) can tag DNA
and activate or repress genes.

|

HISTONE TAIL

HISTONE TAIL

DNA accessible, gene active

Histone modification

The binding of =1 ic f: to “tails™
Hi are p d which | alters the extent to which DNA is wrapped around
DNA can wind for compaction and DNA ir gene ir i histones and the availability of genes in the DNA
gene regulation. to be i d.

http://commonfund.nih.gov/epigenomics/figure.aspx

Histone modification DNA methylation

Chromatin structure NH,

- NH)
CHy
Methyl groups attach N Methyltransferase N
to CpG islands regulating | —— *
N o] N o
H H

gene expression

e acetylation
methylation
ubiquination

@ sumoylation

S @ phosphorylation

-
v
Decreased or no methylation
in active gene expression

Methylation inhibits
gene expression

Nevin C and Carroll M, J Hum Genet Clin Embryol 2015, 1:€004
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Chromatin

Immunoprecipitation y oy
PIEER A A

Sample fragmentation
 Chromatin Immunoprecipitation (ChIP) AL o
» “freeze” the protein-DNA bonds inside the Nm\jj ¢ \//j G
cell nucleus TF ChiP A& T istone
* Extract the DNA bound by a specific \ Jowwmmss  ChiP
protein B —
::aptV \Qi tailing
* Antibodies are used to select specific proteins |
iz E— —
or nucleosomes - - ———
Cluster Amplification
* Enriches for DNA-fragments that are kg J pbrnd l

bound to these proteins or nucleosomes

[b['*l R
il 5
Selected fragments can be either hybridized to |I.
a microarray (ChlIP-chip) or sequenced on NGS ... i I
platform (ChIP-seq). wib evers l ey / \“"

//7 l\\‘

with reversible

Pyrosequencing Sequencing with reversible
terminators by ligation terminators
Extract DNA bound in vivo by T

® MOdierd hlstones Nature Reviews | Genetics

* Specific transcription factors
* RNA Pol Il

19
Ow- 3
cobinding ~S— tethered
TF binding
.1/'1;‘& . i sy, scew‘ ,ﬂdv\\\w
. . ; o= =
* Transcription factors (TFs) ,,\gu‘/‘@_@/ W,Mm ”
. . : DNA methylation Histone modification i
- Regulate gene transcription by e
binding to specific DNA elements AP L byl
such as promoters, enhancers, | :
silencers. e ‘S,”fm‘;’(c’f'éfé’l 1 LD o
Distal DHS X g@, alleX
Distal DHS,
DNase |
footprint,
DNase | cleavage
SNP ..
DNA sequence  ACTA A “affecting’ ACTAGTGCGCATGCGCAATGTACA
Motif1 TFbinding (: (: T (: (: Motif1
_‘_ DNase | Hypersensitive site (DHS) * Disease-associated SNP
i ChIP:seqpeakfmtr;n‘cripnonlanor I 6‘, Transeription factor
e Gene with transcription direction
Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 20
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Regulation

* Chromatin accessibility
Hallmark of regulatory DNA regions

characterized by DNase | hypersensitivity
(DHS)

DHSs are regions of chromatin that are

sensitive to cleavage by the DNase | enzyme.

DNase-Seq analysis

HS HS

eelizceseatlos ow
Fragments : hypersensitive sites
released by V3
DNase -
cleavage
—— GeN0Mic DNA sequence
= Mapped seq tags

\_M— DHS peaks

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141

cobinding ‘O;/

TF bmdnng
. scenarios
Wi f "l\

W—\

&8 £
AP

DNA methylation

TSS

Promoter

%_

Distal DHS (orre\ated

with promoter DHS
Distal DHS

Disease-associated SNP
DNase |

footprint.

DNase | cleavage

C. CGCAATGTACA
Nedif

o
<
>
o
]

2
c
©
H
a
]
=

m

a

Histone modification

—E0_ tethered

‘ ‘V\\I g

S

ACTA( "TJTATACC ANTGTGTACC

, A

Motif2

vc

Motif1

A oNose | Hypersensitive site (DHs)
AL ChiP-seq peak for Histone marks accociated with transcriptional activation
ChiP-seq peak for transcription factor

@ren Gene with transcription direction

¥  Disease-associated SNP

6(’ Transcription factor

21

DNase | footprinting

* DNase | footprinting

* Detects DNA sequences that are protected from cleavage by Dnase |
because they are bound by regulatory factors.

TsS

Promoter
DHS

Distal DHS correlated
with promoter DHS

Distal DHS

Distal DHS,

Motif2

A ONasel Hypersensitive site (OHS)

ChiP-seq peak for transcription factor

axzn Gene with transcription direction

1 _. ChiP-seq peak for Histone marks accociated with transeriptional activation

W Disease-associated SNP

6 L‘ Transcription factor

Genomics Proteomics Bioinformatics 11 (2013) 135-141 22
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DNase | footprinting

+ DNase | footprinting of K562 cells identifies the individual nucleotides
within the MTPN promoter that are bound by NRF1.

Chr7: 1356620001
e — T PN

NRF1 ChlIP-seq -
(K562 cells)
200 bp —
DNase I-seq __L
(K562 cells)

(per nucleotide)

20bp|—||

Vertebrate
conservation
(phyloP) I

H
LTI
..
L

Mo ybiH

-
.-.-

DNA sequence ACTAGTGCECATCEC CAATGTACA

NRF1 motif CCT C C‘*

23

Noncoding variants and TF binding

Promoter

%

Distal DHS correlated I

TGTATACCSGAMGTGTACC

| | A
. Motif2
l|'_'.‘ 1 \IVC\I ™

with promoter DHS

Distal DHS

Distal DHS,

Disease-associated SNP

DNase | A
footprint. N
DNase | cleavage ~
e . SNP 5
DNA sequence  ACTAGTGCGCARGCGCAATGTACA  affecting ACTAGTG
Motif1 ( ( (: { TF binding Motif1

‘ DNase | Hypersensitive site (DHS) * Disease-associated SNP
L, ChiP-seq peak for Histone marks accociated with transcriptional activation
gg‘, Transcription factor

ChiP-seq peak for transcription factor

xrxn Gene with transcription direction

Genomics Proteomics Bioinformatics 11 (2013) 135-141 24
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T allele

Noncoding variants and TF binding

DNase | footprints mark sites of in vivo protein occupancy.
Effect of T/C SNV rs4144593 on protein occupancy and chromatin accessibility.

T or C allele-specific DNase | cleavage profiles from ten cell
lines heterozygous for the T/C alleles at rs4144593.

DNase | cleavage profiles from 18 cell lines

homozygous for the C allele at rs4144593 and
‘ one cell line homozygous for the T allele at

rs4144593.
- "Cell types heterozygous - : Cell types homozygous
T/C SNV rs4144593 ©: TorCatSNVrs4144593

1 Chr9: 36399995

I Chro: 36399995 2 . -
LBRE 20 B 5 5
= 5 ‘8
&—(@)& 3 “ﬂg& T t CAGAGAGACAACAGA § CAGAGAGACAACAGA g
[5G (0CAA Q (a. A 7
\L_Q%& LUPR Y NF1/CTF1 motif S NF1/CTF1 motif :
>>>>>>>> towo: 36300005 [ 1owesesseses
B8 3 ‘.
g & '8
5 £

NF1/CTF1 mom NF1/CTF1 motif ;

Neph, S. et al. Nature 489, 83-90 (2012) 25

Contents

* Introduction to noncoding variants
* Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods
e Convolutional neural network

26
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A typical convolutional neural network layer

* Convolution stage

Next Layer .
e f g h . )
Convolutional Layer N
Pooling stage
T mn+l;1 + I;l!+l:r+ uu+;[1:+
Detector stage:
Nonlinearity
* ew t fo + fw :r ir + _zuv i /'.,; +
Convolutional
stige * Nonlinearity function
* Rectified linear unit (ReLU)
* Tanh, etc.

Input Layer

* Pooling stage

* Max pooling
* Average pooling, etc.

Goodfellow et al., Deep Learning 27

LeNet-5 (1998): An example of 2-D convolution

C3: f. maps 16@10x10

C1: feature maps S4: 1. maps 16@5x5
o2 bt $2:1. maps % cs: |
4 A . layer
8@14x14 120 T i

|
Full conr{ection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE. 86(11): 2278 - 2324,
28
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LeNet-5 (1998): An example of 2-D convolution

C3: 1. maps 16@10x10
INPUT gé:g:&usra maps S4: 1. maps 16@5x5
32x32 qee e S2: 1. maps
e@14x14

| Full connection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection
Average pooling:2*2
INPUT:32*32*3 filter 1:5*5 28*28*6 (stride:2*2)
| b | ls | b | bis — stride: 1*1) Hig | Hyz | Hig | Hyg [ Hys _—__ 14*14*6

— Hyy | Hyp | Has | Haa | Has

— Hy; | Hy | Hag | Hyy [ Hyg

— Hyy | Hap | Hag | Hag | Hys

far | fao | fas | faa | fas i —

— Hs; | Hs | Hsg | Hsg | Hgg

*

- |
53 | lsa | Iss — foo | fso | sz | fsa | fss H| [TH »
| * filter2 B o o o o e e 1

filter 3 H [

filter 4 [

filter 5

|
* * X X

A S S M S S S filter 6

29

Contents

* Introduction to noncoding variants

* Computational methods to prioritize noncoding variants

* Genomic and epigenomic information

* Deep learning methods

e Convolutional neural network

e DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

30

-15-




Sequence-based algorithmic framework
DeepSEA (deep learning—based sequence analyzer)

* Goal: Predict with single-nucleotide sensitivity

the effects of noncoding variants on
transcription factor (TF) binding, DNA
accessibility and histone marks of sequences

1. Simultaneously predict large-scale
chromatin-profiling data, including TF
binding, DNase | sensitivity and histone-

mark profiles

Predicting allele-specific chromatin
profile and chromatin effect

Those predictions are used to estimate
functional effects of noncoding variants

Output:
variant functionality
prediction Functional-variant prediction
Input t
log(allele T/allele A)
Output: 30
predicted chromatin g
effect 2.0
10
0
Compare t
DHS TF binding Histone marks
Output:

Allele T OOOOOOOOOOO
aieea OO Q00000 0@ 0

predicted allele-
specific chromatin

profile

Predict t
Training data: Train s
ENCODE, msss- [ Deep convolutional network

(DeepSEA)

Input t

Roadmap Epigenomics | <«
chromatin profiles

Input:
genomic sequences . . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT . . .
(1,000 bp) . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT. . .

Variant position

Nat Methods. 2015 October; 12(10): 931-934 ;.

* Genome-wide chromatin profiles

Datasets

136

Genomics Proteomics Bioinformatics 11 (2013) 135-141

Table 1

Summary of ENCODE experiments

Experiment

Descriplion

DNA methylation

* From the Encyclopedia of DNA
Elements (ENCODE) and
Roadmap Epigenomics projects

* 690 TF binding profiles for 160
different TFs, 125 DNase | Histone ChIP-seq
hypersensitivity (DHS) profiles _—
and 104 histone mark profiles (a o
total of 919 peak sets).
(Supplementary Table 1)

521.6 Mbp of the genome (17%)
were found to be bound by at
least one measured TF and were
used as a regulatory information—
rich and challenging set for
training the DeepSEA regulatory N
code model GWAS SNP trgeing

DNase footprint

In 82 human cell lines and tissues
A549, Adrenal gland, AG04449, AG04450, AG09309, AG09319, AG L0303, AoSMC, BE2 C, BJ, Brain, Breast
Caco-2, CMK. ECC-1, Fibrobl, GM06990, GM 12878, GM 12891, GM12892, GM 19239, GM19240, HI-hESC,
HAEpiC, HCF, HCM, HCPEpIC. HCT-116, HEEpiC, HEK 293, HeLa-$3, Hepatocytes, HepG2, HIPEpIC, HL-60.
HMEC, HNPCEpIC, HPAERIC, HRCEpIC, HRE, HRPEpIC, HSMM, HTR8svn, IMR90, Jurkat, K562, Kidney,
Left Ventricle, Leukocyte, Liver, LNCaP, Lung, MCF-7, Melano, Myometr, NB4, NH-A, NHBE. NHDF-nco, NT2-
D1, Osteoblasts, Ovear-3, PANC-1, Pancreas, Panlslets, Pericardium, PFSK-1, Placenta, PrEC, ProgFib, RPTEC,
SAEC., Skeletal muscle. Skin, SkMC, SK-N-MC, SK-N-SH, Stomach, T-47D, Testis, U87, UCH-1 and Uterus

A total of 119 TFs:

ATF3, BATF, BCLAFI, BCL3, BCL11A, BDP1, BHLHE40, BRCAI, BRF1, BRF2, CONT2, CEBPB, CHD2,
CTBP2, CTCF, CTCFL, EBFI, EGRI. ELF1, ELK4, EP300, ESRRA, ESR1, ETSI, E2F1, E2F4, E2F6, FOS,
FOSLI, FOSL2, FOXAL, FOXA2, GABPA, GATAIL, GATA2, GATA3, GTF2B, GTF2F1, GTF3C2, HDAC2,
HDACS, HMGN3, HNF4A, HNF4G, HSF1, IRF1, IRF3, IRF4, JUN, JUNE, JUND, MAFF, MAFK, MAX,
MEF2A. MEF2C, MXI1, MYC, NANOG, NFE2, NFKBI, NFYA, NFYB, NRF1, NR2C2, NR3C1, PAX5. PBX3
POLR2A, POLR3A, POLR3G, POU2F2, POUSFI, PPARGCIA, PRDMI, RAD21, RDBP, REST, RFX3, RXRA
SETDBI, SIN3A, SIRT6, SIX5, SMARCA4, SMARCEBI, SMARCC], SMARCC2, SMC3, SPII. SP1, SP2,
SREBFI. SRF, STATI, STAT2, STAT3, SUZI2, TAFI, TAF7, TALI, TBP, TCF7L2, TCF12, TFAP2A. TFAP2C.
THAPL, TRIM28, USF1, USF2, WRNIPL, YY1, ZBTBTA, ZBTB33, ZEB1, ZNF143, ZNF263, ZNF274 and ZZZ23
A total of 12 types:

H2A.Z, H3K4mel, H3Kdme2, H3Kdme3, H3K%c, H3K9mel, H3K9me3, H3K27ac, HIK27me3, H3K36me3,
H3K79me2 and H4K20mel

In 125 cell types or treatments:

BOSET, AS49, AG4449, AGO4450, AGO9309, AGO9319, AG10803, AoAF, AoSMC /serum_free_media, BE2_C, BJ
Caco-2, CD20, CD34, Chorion, CLL, CMK, Fibrobl, FibroP, Gliobla, GM06990, GM12864, GM 12865, GM 12878
GM12891, GM12892, GM 18507, GM 19238, GM19239, GM19240, H7-hESC, HOES, HAc, HAEDIC. HA-h, HA-sp
HBMEC, HCF, HCFaa, HCM, HConF, HCPEpIC, HCT-116, HEEpiC, HeLa-83, Hel.a-83_IFNadh, Hepatoeytes
HepG2. HESC, HFF, HFF-Myc, HGF, HIPEIC, HL-60, HMEC, HMF, HMVEC-dAd, HMVEC-dBl-Ad
HMVEC-dBI-Neo, HMVEC-dLy-Ad, HMVEC-dLy-Neo, HMVEC-dNeo, HMVEC-LBI, HMVEC-LLy
HNPCEpiC, HPAEC, HPAF, HPDEG-EGE7, HPALF, HPF, HRCEpiC, HRE, HRGEC, HRPEpIC, HSMM,
HSMMemb, HSMMtube, HTR8svn, Huh-7, Huh-7.5, HUVEC, HVMF, iPS, Ishikawa_Estr, Ishikawa_Tamox,
Jurkat, K562, LNCaP, LNCaP_Andr, MCF-7, MCF-7_Hypox, Medullo, Melano, MonocytesCD14+ . Myometr,
NB4, NH-A, NHDF-Ad, NHDF-nco, NHEK, NHLF, NT2-D1, Osteobl, PANC-1, PanlsletD, Panlslets, pHTE,
PrEC, ProgFib. PrEC, RPTEC, RWPEI, SAEC, SKMC, SK-N-MC, SK-N-SH_RA, Stellate, T-47D, Tho, Thl, Th2,
Urathelia, Urothelia_UT189, WERI-Rb-1, WI-38 and WI-38_Tamox

In 41 cell types:

AGI0803, AoAF, CD20+, CD34+ Mobilized, {Brain, {Heart, (Lung, GM06990, GM 12865, HAEpIC, HA-h. HCF,
HCM, HCPEpiC, HEEPIC, HepG2, H7-hESC. HFF, HIPEpiC, HMF, HMVEC-dBI-Ad. HMVEC-dBI-Neo.
HMVEC-dLy-Neo, HMVEC-LLy, HPAF, HPALF, HPF, HRCEpiC, HSMM, Thi, HVMF, IMRY0, K562, NB4,
NH-A, NHDF-Ad, NHDF-neo, NHLF, SAEC, SkMC and SK-N-SH RA

In GMI2878 and K362

In GMI2878, K562, HeLa-S3 and HI-hESC

296 noncoding GWAS SNPs were assigned a largel promoter

Nat Methods. 2015 October; 12(10): 931-934
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Datasets for chromatin profile prediction

* |nput
* From 521,6 Mbp sequences (the human GRCh37 reference genome)
* 1,000-bp DNA sequence

* Centered on each 200-bp bin

* 400-bp flanking regions at the two sides for extra contextual information
* One hot encoding

One hot encoding

|
1
=
|

Pt

] o |
CI1C]
I
[ [ .|

OoOE
| |m(Em

[ | [
o o |
ogoog
EEECOC

[ [ 1 [ [ (] [ 1 ] ] ] ] 1 ] [ 6] 6] [ [ 81 ) [ [ (61 (61 [ [ [
Output

* 919 chromatin features

* A chromatin feature was labeled 1 if more than half of the 200-bp bin is in the peak
region and 0 otherwise.

* Example:
* Whether DNase-seq in a cell-line T-47D has a peak in the 200-bp bin
* Whether TF FOXA1 in a brain cell-line has a peak in the 200-bp bin

Nat Methods. 2015 October; 12(10): 931-934 .,

Training and Test sets

* Test: Chromosome 8 and 9

 Validation:

* 4,000 samples on chromosome 7 spanning the genomic
coordinates 30,508,751-35,296,850.

* Hyperparameter selection

* Training: Rest of the autosomes

Nat Methods. 2015 October; 12(10): 931-934
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DeepSEA model
configuration

sigmoid

Fully connected 925

Model Architecture Fully connected 925

Convolution layer ( 320 kernels. Window size: 8. Step size: 1) Flatten (960*53)

Pooling layer ( Window size: 4. Step size: 4) %OE
. . . . 960 convolution
. . g ((1,000-7)/4-7)/4-7
Convolution layer ( 480 kernels. Window size: 8. Step size: 1) Kernels 480*8 Comvoluton wirdow trod
Pooling layer ( Window size: 4. Step size: 4) 480
{(1,000-7)/4-7)/4
Convolution layer ( 960 kernels. Window size: 8. Step size: 1) pooling indow size:4

Fully connected layer ( 925 neurons )

. . 480 convolutien
Sigmoid output layer kernels: 320%8

L (1,000-7)/4
pooling Window size:4

320 RelLU
320 conyelution 1,000-7
kernels:|4*8 convolution window size:8
a | -
input o

Nat Methods. 2015 October; 12(10): 931-934 _,

DeepSEA model
configuration smid

Fully connected 925

¢ Training of the DeepSEA model.

objective = NLL + A, [|W [} + A, [[H"[|; Fully connected 925

Flatten (960*53)
NLL = - Y Ylog(Y f;(X*) + (1 - Y)(1 - f(X*))) =

st

" RelLU
960
. .. 960 convolution
+ s:index of training samples . ((1,000-7)/4-7)/4-7
. kernels SRl Convolution window size:8  layer5

t : index of chromatin features.
* Y7:0,1label for sample s, chromatin feature t. 480
ft (X°): the predicted probability output of the model for
chromatin feature t given input X5.

((1,000-7)/4-7)/4
pooling window size:4 layerd

. . 480 convoluticn -7)/4-7)
* Regularization Parameters: kernels: 320%8
* L2 regularization (A,): 5e-07
* L1 sparsity (A,): 1e-08 L (1,000-7)/4
pooling Window size:4 layer2

* Dropout proportion (proportion of outputs randomly set to
0): 320

e Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other 320 conyolution
Iayers: 0% kernels:|4*8 convolution window size:8

RelU

4| input

1000
+7

Nat Methods. 2015 October; 12(10): 931-934
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Regularization

* When model complexity increases, generally bias decreases and variance increases

* Minimize the total error.

a

Total

Error

Variance

Bias

Model complexity

(b) Polynomial fits to data

- Underfitting (gray diagonal line, linear fit),

- Reasonable fitting (black curve, third-order polynomial)
- Overfitting (dashed curve, fifth-order polynomial).

(c) Two-class classification

- Underfitted (gray diagonal line)

- Reasonable (black curve)

- Overfitted (dashed curve) decision boundaries.
NATURE METHODS | VOL.13 NO.9 |
SEPTEMBER 2016 | 703 37

Regularization (L1 norm and L2 norm)

* To reduce its generalization error but not its training error

argmin((Xw —Y)T (Xw —Y) + Areg(w)) = argmin(J (w) + Areg(w))

L2 regularization L1 sparsity

reg(w)=|lw||3 regw)= | wl| |,

g -7 Minimizes data term
o \
N
/71~ 7, " 1 Minimizes combination
t }
M ;!
N ~NL 7y .
~ . 7 Minimizes regularization * L1:Encourages sparsity
w1 ¢ Squared L2: Encourages small weights
Figure 7.1

Goodfellow, Deep Learning, 201638
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Regularization for Deep Learning

* Dropout
Figure 7.6 R IR IR
ofo @‘@ @’@ 0
&0 vl |gd
0

e@

®
©

@/(9

©)
©,
®
®
O

cgc
o6

Base network

ol®%e

Ol ©

Ensemble of subnetworks

Goodfellow, Deep Learning, 201639

DeepSEA model configuration

sigmoid

Fully connected 925

* Training of the DeepSEA model.

objective = NLL + A, [|W [} + A, [[H"[|; Fully connected 925

Flatten (960*53)

NLL = - Y Ylog(Y f;(X*) + (1 - Y)(1 - f(X*)))

T3 " RelLU
960
. .. 960 convolution
+ s:index of training samples . ((1,000-7)/4-7)/4-7
kernels SRl Convolution window size:8  layer5

e t:index of chromatin features.

* Y7:0,1label for sample s, chromatin feature t.

ft (X°): the predicted probability output of the model for
chromatin feature t given input X5.

480

((1,000-7)/4-7)/4
pooling window size:4 layerd

* Regularization Parameters: ernes > 881 Ea
* L2 regularization (%,): 5e-07
© U SparSity (7\'2): 1e-08 poolingtx/indow(:i’::::_”/4 layer2
* Dropout proportion (proportion of outputs randomly set RelU
to 0):
¢ :_:\IVeerl;'Z(:)'-’ZAJO%’ Layer 4:20%, Layer 5:50%, All other i:?ﬂe;;v:l;tion convolution window size:8

4| input

1000
+7

Nat Methods. 2015 October; 12(10): 931-934
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model.lua

require 'torch’

require 'nn’

s . model:add(nn.SpatialConvolutionMM(nkernels[2], nkernels[3], 1, 8, 1, 1, 0):cuda())
require 'cunn

require 'math’ model:add(nn.Threshold(0, 1le-6):cuda())

model:add(nn.Dropout(0.5):cuda())
nfeats = 4 nchannel = math.floor((math.floor((width-7)/4.0)-7)/4.0)-7

width = trainData.data:size(3) model:add(nn.Reshape(nkernels[3]*nchannel))

height = 1 model:add(nn.Linear(nkernels[3]*nchannel, noutputs))

ninputs = nfeats*width*height model:add(nn.Threshold(0, 1e-6):cuda())

nkernels = {320,480,960} model:add(nn.Linear(noutputs , noutputs):cuda())

model:add(nn.Sigmoid():cuda())
model = nn.Sequential()
print(model)

model:add(nn.SpatialConvolutionMM(nfeats, nkernels[1], 1, 8, 1, 1, 0):cuda())
model:add(nn.Threshold(0, 1e-6):cuda())
model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())
model:add(nn.Dropout(0.2):cuda())
model:add(nn.SpatialConvolutionMM(nkernels[1], nkernels[2], 1, 8, 1, 1, 0):cu
da())

model:add(nn.Threshold(0, 1e-6):cuda())
model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())

model:add(nn.Dropout(0.2):cuda())

Nat Methods. 2015 October; 12(10): 931-934 |

Chromatin profile prediction performance

a Transcription factors DNase I-hypersensitive sites Histone marks
1.00 1.00
- g o g o075
Receiver operating 2 £ 2
g 2 0.50 2 0.50
characteristic (ROC) ¢ S &
curves £ £ 025 2 025
0.958 0.923 0.856
0 0 0
T T T T T T T T T T T T T T T
0 025 050 075 1.00 0 025 050 075 1.00 0 025 050 075 1.00
False positive rate False positive rate False positive rate

Performance comparison with gkm-SVM for TF binding site prediction

1.0

1.0 - g
AL . 09 &N %0
N Gapped k-mer
X 10 -
§§ o %8 = SVM did not
[=} = H
DeepSEA outperformed 8 2 . o7 gain performance
82 i . :
k-mer SVM for most TFs. " 0s from increasing
06 size of context
sequences
0.4 05
0.4 0.6 0.8 1.0
gkm-SVM DeepSEA  gkm-SVM gkm-SVM
(300bp) (1000bp) (1000bp)  (300bp)

Nat Methods. 2015 October; 12(10): 931-934
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Chromatin effects of single-nucleotide
alteration in noncoding sequence

Output:

variant functionality
prediction Functional-variant prediction
e + Computational mutation scanning to assess the
edcedchamain 39 effect of mutating every base of the input sequence
p  The effect of a base substitution on a specific
campr £ chromatin feature prediction
DHS TF binding Histone marks
;?r:(z:)l‘uc::edallele-r meet O@@0 @00 00@0 PO Pl
e e OOQO0@0 000 log, - log,
1- P, 1-P,

Predict t
Training data: Train % =
‘E.Z‘:;’m“;i'mgmm’ —| T et l P,: probability predicted for the original sequence

P,: probability predicted for the mutated sequence

Input '
Input:
genomic sequences . . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT . . .
(1,000 bp) . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT . . .
Variant position

Nat Methods. 2015 October; 12(10): 931-934 ,,

Chromatin effects of single-nucleotide
alteration in noncoding sequence

2L BN 2 B * Evaluation data
S RS R . . . - .
- \\“@3‘& O °:\ * Allelic imbalance information from digital genomic
W ‘@, N . . .
Ter footprinting (DGF) DNase-seq data on ENCODE cell lines.
* Gell types heterozygous Goll types homozygous . AIIeIic'im.ngance: one allele is observed in DNase-seq
_ T/CSNVrs4144503 .- T or C at SNV rs4144593 data significantly more often than the other allele at a
1 Cho: 36399995 Bl 1o s39900s - heterozygous site for a single-cell-type sample
£ 3 :5 . .
g Mﬂlﬁu\hﬂ\ % M‘L‘u‘“\ ) * 57,407 allelically imbalanced SNPs from 35 cell types
] - B e 5 B i = ‘g with DHS predictors
2 NF1/CTF1 motit g st K * 28,918 reference allele—biased variants

28,489 alternative allele— biased variants

1 Chr9: 36399995 1 Chr9: 36399995

@
©
@
‘2
o
K
©
=

NF1/CTF1 motif F1/CTF1 motif

B T/T homozygotes
juudioo4

T am
N i
Neph, S. et al. Nature 489, 83-90 (2012).

Nat Methods. 2015 October; 12(10): 931-934 ,,
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Performance for predictions for DNase |-
sensitive alleles

(b)

* Y-axis: predicted prob. that reference allele is
DHS

» X-axis: predicted prob. that alternative allele
is DHS

* Red dot: experimentally determined
alternative allele—biased variant by DGF data . 0 02 04 06 08 10 0'56 005 010 0.15 020 025 0.30 0.3 0.40

* Blue dot: experimentally determined Pous (altemative) Margin
reference allele—biased variant by DGF data

Ppys (reference)

(c) Accuracy.

* Black lines: the margin, or the threshold of * Blue line: performance for a different cell
predicted probability differences between the type
two alleles for classifying high-confidence * Red line: overall performance on allelically
predictions (margin = 0.07 for this plot). imbalanced variants for all 35 cell types

Nat Methods. 2015 October; 12(10): 931-934 .

Functional SNP prioritization

Probability Output

Boosted logistic
regression classifier

Take absolute value, concatenate, and standardize features (1842 features)

Evolutionary conservation Absolute difference features Relative difference

scores (919 features) features (919 features)
(PhastCons, PhyloP, P —
GERPf+ neural ev_olupon P(reference) — P(alternative) I P (aRoTaiive)
and rejected substitution
scores) \>-<
1 Predicted chromatin Predicted chromatin
features for features for
reference allele alternative allele

DeepSEA model

f

1000bp flanking genomic sequences with each allele

|
|

Variantinput

Nat Methods. 2015 October; 12(10): 931-934
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Data for functional SNP prioritization

e Positive standards

* Human Gene Mutation Database (HGMD) annotated noncoding
regulatory mutations

* Noncoding eQTLs from the GRASP (Genome-Wide Repository of
Associations between SNPs and Phenotypes) database

* Noncoding trait-associated SNPs identified in GWAS studies
from the US National Human Genome Research Institute’s
GWAS Catalog

* Negative standards

* Several sets of negative SNPs with different distances to positive
standard SNPs

* Closest 1000 Genomes SNPs in the full set, 25% random subset
and 5% random subset of 1000 Genomes SNPs with minor allele
frequency greater than 0.01.

* More...

Nat Methods. 2015 October; 12(10): 931-934

Performance of functional SNP prioritization

e AUC values for tenfold cross-validation

HGMD regulatory mutation GRASP eQTL (noncoding) GWAS Catalog (noncoding)
0.70 (n=2,977) 0.75 - (n=78,613) 0.75 - (n = 12,296)

DeepSEA
CADD

0.65 070 - 0.70 - GWAVA (unmatched)
0.65 |- 0.65 |- GWAVA (tss)
S ool ‘ i
< 0.60 b 0.60 | GWAVA (region)
L FunSeq2
0.55 0.55 |- 0.55 |- \

0.50 0.50 0.50
1,200 260 100 Al 31,000 6,300 1,400 360 All 31,000 6,300 1,400 360

Negative SNP group (bp) Negative SNP group (bp) Negative SNP group (bp)

X axes: average distances of negative-variant groups to a nearest positive variant
All: randomly selected negative 1000 Genomes SNPs

Nat Methods. 2015 October; 12(10): 931-934
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* Introduction to noncoding variants
* Computational methods to prioritize noncoding variants
* Genomic and epigenomic information
* Deep learning methods
e Convolutional neural network
* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model
* DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences
Nucleic Acids Research, 2016, Vol. 44, No. 11 e107
49
Recall) CNN and modelling TF binding
sites
* CNN predicts the binding affinity of the TAL1I-GATA1 » a: One-hot encoding of the DNA sequence.

a
Input

transcription factor complex.

c

Convolution Activation

> >
RO\
TR TR

Max

e
pooling Convolution

m | . Filters
’ \>
\

o (? o‘” /\v
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14717
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0
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9 h
Global Fully
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pooling connecte:
N
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GATA1+TAL1

e

GATA1

Nature reviews genetics volume 20:389 July 2019

b: First convolutional layer scans the input sequence
using filters, which are exemplified by position weight
matrices of the GATA1 and TAL1 transcription factors.
c: Negative values are truncated to 0 using ReLU
activation function.

d: In the max pooling operation, contiguous bins of
the activation map are summarized by taking the
maximum value for each channel in each bin.

e: The second convolutional layer scans the sequence
for pairs of motifs and for instances of individual
motifs.

f: ReLU activation function is applied.

g: The maximum value across all positions for each
channel is selected.

h: A fully connected layer is used to make the final
prediction.

50

-25-




Recurrent Dense Multi-task output

Convolution Max pooling

One hot coding

DanQ model

ACACCTCACTCATTCTTATCTCTT

* Graphical illustration of the DanQ model
- Input sequence
- One hot encoded into a 4-row bit matrix.
- Convolution layer with rectifier activation
- Acts as a motif scanner across the input matrix
- Produces an output matrix with a row for each convolution
kernel and a column for each position in the input.
- Max pooling
- Reduces the size of the output matrix along the spatial axis,
preserving the number of channels.

model = Sequential()

model.add(Convolution1D(input_dim=4,
input_length=1000,
nb_filter=320,
filter_length=26,
border_mode="valid",
activation="relu",
subsample_length=1))

model.add(MaxPooling1D(pool_length=13, stride=13))
model.add(Dropout(0.2))

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10751

Max pooling 5 Recurrent Dense Multi-task output

Convolution

One hot coding

DanQ model

00-25)/13=75

A

[T

ACACCTCACTCATTCTTATCTCTT

* Graphical illustration of the DanQ model
- BLSTM layer
- Considers the orientations and spatial distances between the
motifs.
- Two fully connected layers
- Adense layer of rectified linear unit
- Sigmoid non-linear transformation to a vector that serves as
probability predictions of the epigenetic marks to be
compared via a loss function to the true target vector.

¢ The rationale for BLSTM layer

- Motifs can follow a regulatory grammar

- invivo spatial arrangements and frequencies of
combinations of motifs,

- Afeature associated with tissue-specific functional
elements such as enhancers

forward_Istm = LSTM(input_dim=320, output_dim=320, return_sequences=True)
backward_Istm = LSTM(input_dim=320, output_dim=320, return_sequences=True)
brnn = Bidirectional(forward=forward_Istm, backward=backward_Istm, return_sequences=True)

model.add(brnn)

model.add(Dropout(0.5))

model.add(Flatten())

model.add(Dense(input_dim=75*640, output_dim=925))

model.add(Activation('relu'))

model.add(Dense(input_dim=925, output_dim=919)) Note (1000_25)/13=75
model.add(Activation('sigmoid'))

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10752

-26-




Performance comparison

 Training, validation and testing sets were downloaded from the DeepSEA website
* Input: reference sequence
» QOutput:A length 919 binary target vector from 919 ChlP-seq and DNase-seq peak

sets from uniformly processed ENCODE and Roadmap Epigenomics data releases

GM12878 EBF1 H1-hESC SIXS5

1.0y 1.0,

1.0

0.95
S .90
<C 0.85 S
8 0.80 ’
o 0,75
2 0.70
8 o635

0.60

=
o

e

=
m

=
I

[— Dang (AUC=0.972)
| — DeepSEA (AUC=0.956)
o7 — LR (AUC=0.861)

— DanQ {AUC=0.927)
| — DeepSEA (AUC=0.893)
1 — LR (AUC=0.727)

True Positive Rate
P

True Positive Rate

B B

0.2 04 0.6 08
False Positive Rate

0.2 o4 0.6 0.8
False Positive Rate

sle”
0'%’.’55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.0

DeepSEA ROC AUC

» DanQ outperforms DeepSEA for
94.1% of the targets with an absolute
improvement of around 1-4% for
most targets

Logistic regression (LR) is an effective predictor,
with ROC AUC scores typically over 70%.

» Given the sparsity of positive binary targets (~2%),
the ROC AUC statistic is highly inflated by the class
imbalance

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10753

Performance comparison

* A Dbetter metric to measure the performance is the area under precision-recall curve
(PR AUC)

* Neither the precision nor recall take into account the number of true negatives

* PRAUC metric is less prone to inflation by the class imbalance than the ROC AUC

metric is

GM12878 EBF1 H1-hESC SIX5

1

(4
©

o
o

e

DanQ PR AUC
D

o
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0.4

0.6

0.8

DeepSEA PR AUC

1.0

— DanQ (AUC=0.291) 1.2 — DanQ (AUC=0.469)

0.9 — DeepSEA (AUC=0.187) 14 — DeepSEA (AUC=0.287)
c — LR (AUC=0.048) c — LR (AUC=0.027)
O 0.4 G 0.8
So. 2
(v} O 0.6
D g4 o
o a 0.4

0.3 0.2

o —
%85 0.2 0.4 0.6 0.8 1o 88 0.2 0.2 0.6 0.8
Recall Recall

two examples

LR models achieve a PR AUC below 5% for the

"« performance gap between DanQ between
DeepSEA is much more pronounced under the PR
AUC statistic than under the ROC AUC statistic

* 97.6% of all DanQ PR AUC scores surpass
DeepSEA PR AUC scores

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10754
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Position frequency matrices, or motifs

» Convert the kernels from the convolution layer of the DanQ models to position
frequency matrices, or motifs.

« Align these motifs to known motifs using the TOMTOM algorithm.

+ Of the 320 motifs learned by the DanQ model, 166 significantly match known motifs
(E <0.01).

A EBF1 TP63 CTCF
E=2.2e-4 E=1.6e-11 E=2.7e-12
:] TC?CCQ‘A“ iI .'.'G.”.‘E."..‘?':‘."C?T. Tee | 28 CE‘O'CAMCA

* Top: EBF1, TP63 and CTCF motif logos from JASPAR
» Bottom: three convolution kernels

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10755

Functional SNP prioritization

e Prioritize functional SNPs based on

differences of predicted chromatin * DanQ outperforms DeepSEA
effect signals between reference and across most of the testing sets
variant allele sequences. * Performance difference with 0.5-2% in
. . . ROC AUC metric.
* Training and testing SNP sets from
DeepSEA
* Positive functional variant data ' _
* eQTL SNPs from the GRASP database A gy GUWAS (Ria1%g Spayodind?
* non-coding trait-associated SNPs 0.75 0.75
identified in GWAS studies from the US 070 — DanQ
NHGRI GWAS Catalog ' 0.70 —  DeepSEA
* Negative ‘non-functional’ variant 5065 Sos6s
* SNPs in 1000 Genomes project. 0.0 8 0.60
* Train and evaluate using boosted 055 " oeea|]
ensemble classifiers. 030 31,600 6,300 7i0 360 0-50—4 31,000 6,300 710 360
Negative SNP group (bp) Negative SNP group (bp)

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10756
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summary

Noncoding variants

Computational methods to prioritize noncoding variants based on
genomic and epigenomic information
* GWAVA: Genome-wide annotation of variants

Deep learning methods based on genomic sequence

* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

* DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences

If you are interested, see studies in related topics.

* DeepC: predicting 3D genome folding using megabase-scale transfer
learning (Nature Methods 17:1118-1124(2020))

* Predicting 3D genome folding from DNA sequence with Akita (Nature
Methods 17:1111-1117(2020))
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