KSBi-BIML 2021

Bioinformatics & Machine Learning (BIML) Workshop for Life Scientists

생물정보학 & 머쉰러닝 워크샵(온라인)

Noncoding Variants and Deep Learning

이현주

Bioinformatics & Machine Learning for Life Scientists BIML-2021

안녕하십니까?

한국생명정보학회의 동계 워크샵인 BIML-2021을 2월 15부터 2월 19일까지 개최합니다. 생명정보학 분야의 융합이론 보급과 실무역량 강화를 위해 도입한 전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하였으며 올해로 7차를 맞이하게 되었습니다. 유례가 없는 코로나 대유행으로 인해 올해의 BIML 워크숍은 온라인으로 준비했습니다. 생생한 현장 강의에서만 느낄 수 있는 강의자와 수강생 사이의 상호교감을 가질수 없다는 단점이 있지만, 온라인 강의의 여러 장점을 살려서 최근 생명정보학에서 주목받고 있는 거의 모든 분야를 망라한 강의를 준비했습니다. 또한 온라인 강의의한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다.

BIML 워크샵은 전통적으로 크게 생명정보학과 AI, 두 개의 분야로 구성되어오고 있으며 올해 역시 유사한 방식을 채택했습니다. AI 분야는 Probabilistic Modeling, Dimensionality Reduction, SVM 등과 같은 전통적인 Machine Learning부터 Deep Learning을 이용한 신약개발 및 유전체 연구까지 다양한 내용을 다루고 있습니다. 생명정보학 분야로는, Proteomics, Chemoinformatics, Single Cell Genomics, Cancer Genomics, Network Biology, 3D Epigenomics, RNA Biology, Microbiome 등 거의 모든 분야가 포함되어 있습니다. 연사들은 각 분야 최고의 전문가들이라 자부합니다.

이번 BIML-2021을 준비하기까지 너무나 많은 수고를 해주신 BIML-2021 운영위원회의 김태민 교수님, 류성호 교수님, 남진우 교수님, 백대현 교수님께 커다란 감사를 드립니다. 또한 재정적 도움을 주신, 김선 교수님 (Al-based Drug Discovery), 류성호 교수님, 남진우 교수님께 감사를 표시하고 싶습니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 강의자료를 만드는데 노력하셨을 뿐만아니라 실시간 온라인 Q&A 세션까지 참여해 수고해 주시는 모든 연사분들께 깊이감사드립니다.

2021년 2월

한국생명정보학회장 김동섭

강의개요

Noncoding variants and deep learning

악성종양, 고혈압 등 복합 질환 환자의 DNA를 시퀀싱을 했을 때, 넌코딩 영역에서 많은 변이 (noncoding variant)가 관찰되고 있다. Noncoding variants가 유전자의 발현이나 질병의 진행에 미치는 영향에 대한 연구는 질병을 이해하고, 이를 치료하기 위한 타겟을 선정하는데 중요하다. 최근에는 DNA 시퀀스에 기반하여 noncoding variant의 기능적 영향을 예측하기 위한 다양한 딥 러닝에 기반 방법론들이 개발되고 있다.

본 강의에서는 noncoding variant의 기능적 영향을 예측하기 위한 딥 러닝 방법론들을 소개하고, 이러한 방법론을 환자의 DNA 시퀀스에 적용하여, 질병 관련된 유전자들을 발굴한 연구들을 살펴본다. 본 강의를 통해서 DNA 시퀀스에 적용된 딥러닝 기반 방법론들과 이를 생물학 지식으로 변환하는 연구들을 이해하는 것을 목표로 한다.

- Noncoding variants의 개요
- 딥 러닝 방법론의 DNA 시퀀스 적용
- Noncoding variants의 기능적 영향 예측
- 질병 관련 변이 예측 연구
- * 강의: 이현주 교수 (광주과학기술원 전기전자컴퓨터공학부)

Curriculum Vitae

Speaker Name: Hyunju Lee, Ph.D.

▶ Personal Info

Name Hyunju Lee Title Professor

Affiliation Gwangju Institute of Science and Technology

▶ Contact Information

Address 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005 Email hyunjulee@gist.ac.kr
Phone Number 062-715-2213

Research interest: Bioinformatics, Machine learning, and Text Mining

Educational Experience

1997 B.S. in Computer Science, KAIST, South Korea

M.A. in Computer Engineering, Seoul National University, South Korea
 Ph.D. in Computer Science, University of Southern California, USA

Professional Experience

2006-2007 Post-doc Research Fellow, Brigham and Women's Hospital and Harvard Medical

School, USA

2007- Assistant, Associate, Full Professor, Electrical Engineering and Computer Science,

Gwangju Institute of Science and Technology

Selected Publications (5 maximum)

- 1. Ho Jang and Hyunju Lee, Multiresolution correction of GC bias and application to identification of copy number alterations, Bioinformatics, 35(20), 2019.
- 2. Jeongkyun Kim, Jung-jae Kim, and Hyunju Lee, PLoS Computational Biology, DigChem: Identification of disease-gene-chemical relationships from Medline abstracts,15(5), 2019.
- 3. Jihee Soh, Hyejin Cho, Chan-Hun Choi, and Hyunju Lee, Identification and Characterization of MicroRNAs Associated with Somatic Copy Number Alterations in Cancer, Cancers, 10(12):475, 2018.
- 4. Bayarbaatar Amgalan and Hyunju Lee, DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method, Bioinformatics, 31(15), 2015.
- 5. Daeyong Jin and Hyunju Lee, A computational approach to identifying gene-microRNA modules in cancer PLoS Computational Biology,11(1), 2015.

본 강의 자료는 한국생명정보학회가 주관하는 KSBi-BIML 2021 워크샵 온라인 수업을 목적으로 제작된것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다. 수업 목적으로 배포 및 전송 받은 경우에도 이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없습니다.

만약 이러한 사항을 위반할 경우 발생하는 모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고합니다.

Contents

- Introduction to noncoding variants
- · Computational methods to prioritize noncoding variants
- · Genomic and epigenomic information
- Deep learning methods

3

Genomic variants

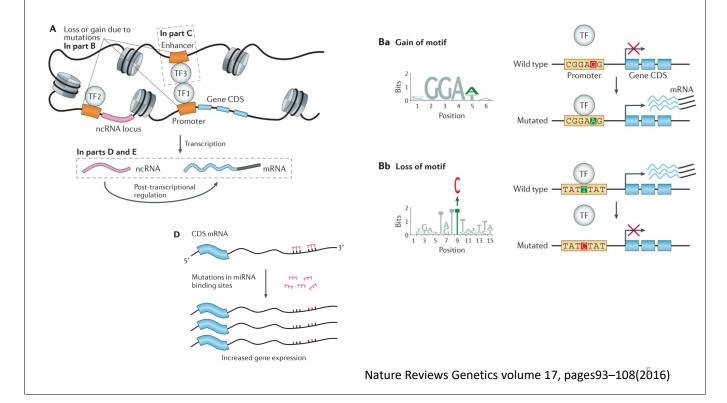
- Protein-coding regions make up around 1% of the human genome
- ENCODE suggests (Nature 489, 57–74 (2012))
 - 82% of the human genome was functionally important having biochemical activity.
 - ~20 % of the genome is associated with DNase hypersensitivity or transcription factor binding (common features for identifying regulatory region)
- How coding and noncoding variation can impact gene function

Variant Location	Transcript Map	Transcript Product	Transcript description	Potential Outcome
Coding (standard interpretation)	······································	}}	Synonymous/ Missense/ Nonsense	Homeostasis/ Altered Product/ Loss of function
Promoter/Enhancer/ Looping/cis-regulatory IncRNA	······································		Over/ Under expression	Aberrant expression patterns
Splice Donor/Acceptor Branchpoint	·····		Skipped exon/ Retained intron	Altered product Nonsense Mediated Decay

Gloss and Dinger Experimental & Molecular Medicine (2018) 50.97

Noncoding variants

Mutations in noncoding variants can lead to gain or loss of transcription



Coding vs. noncoding variants

- Prediction of the effect of a coding variant on protein function
 - 'sorting tolerant from intolerant' (SIFT) algorithm
 - 'polymorphism phenotyping' (PolyPhen) tool
 - · Protein sequences have been highly conserved throughout evolution
 - · Based on a multiple-sequence alignment

Regulatory elements

- Conservation is a less important signal when interpreting variants
- Effects of regulatory variants have quantitative rather than qualitative effects on gene expression
- Same variant may have a larger or smaller effect in different tissues, at different developmental stages and even in different individuals.

Contents

- Introduction to noncoding variants
- Computational methods to prioritize noncoding variants
- Genomic and epigenomic information
- Deep learning methods

7

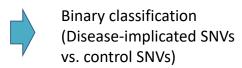
Computational methods to prioritize noncoding variants with functional effects

Tool	Year	Method used to build model
CADD	2014	Support vector machine
GWAVA	2014	Random forest algorithm
DeepSEA	2015	Deep learning, CNN
DanQ	2016	Deep learning, CNN, RNN
DeFine	2018	Deep learning, CNN

Machine learning model (GWAVA)

- GWAVA: Genome-wide annotation of variants
 - Prioritization of noncoding variants by integrating various genomic and epigenomic annotations
 - https://www.sanger.ac.uk/tool/gwava/

Various genomic and epigenomic information



(SNVs: single-nucleotide variants)

Nature Methods volume 11, pages294–296(2014)

Machine learning model (GWAVA)

- Disease-implicated SNVs
 - All variations annotated as 'regulatory mutations' from the public release of the Human Gene Mutation database (HGMD)
- Control sets
 - Common (minor allele frequency ≥1%) SNVs from the 1000 Genomes Project (1KG)
 - First set: a random selection of SNVs from across the genome in order to sample overall background.
 - Second set: matched for distance to the nearest TSS genome-wide.
 - HGMD variants are not distributed randomly across the genome; 75% lie within a 2 kilobase (kb) window around an annotated transcription start site (TSS)
 - Third set: all 1KG variants in the 1 kb surrounding each of the **HGMD** variants.

Machine learning model (GWAVA)

- Genomic and epigenomic annotations
 - Open chromatin: DNase-seq data from ENCODE
 - Transcription factor binding: ChIP-seq peak calls for 124 TFs from ENCODE
 - Histone modifications: ChIP-seq peak calls for 12 modifications from ENCODE
 - RNA polymerase binding: ChIP-seq peak calls from ENCODE
 - CpG islands: Predictions from Ensembl
 - Genome segmentation: discrete states such as transcription start sites, gene ends, enhancers, transcriptional regulator CTCF-binding regions and repressed regions
 - Conservation: Genomic evolutionary rate profiling (GERP) scores from mammalian alignments
 - Human variation: Variants and allele frequencies 1000 Genomes Project phase 1 data
 - Genic context: distance from any base annotated as exonic, intronic, coding sequence, 5' or 3' untranslated region, splice site, or start or stop codon in any transcript

Nature Methods volume 11, pages294-296(2014) 11

Machine learning model (GWAVA)

- Genomic and epigenomic annotations
 - A large matrix with a row for each variant locus and a column for each possible annotation.
 - The column type depending on the annotation class
 - (i) the number of cell lines in which the variant locus overlaps some annotation, such as DNase I hypersensitive sites and ChIPseq peaks
 - (ii) a present-absent binary flag
 - Ex) whether this region is ever in an annotated intron
 - (iii) a continuous value for genome-wide annotations
 - Ex) conservation and distance to the nearest TSS

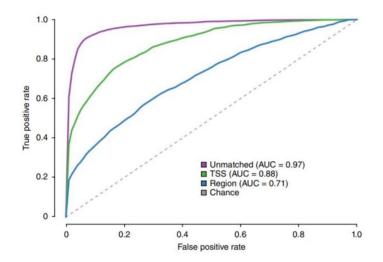
A part of example annotations

	chr	end	start	DNase	E2F1	H3K27ac	H3K27me3	cpg_isla nd	gerp	tss_dist	 TSS	INTRON	STOP	UTR 3	
rs111626726	chr3	1.5E+08	1.5E+08	12	0	12	1	1	3.18	447	 6	1	0	0	

Nature Methods volume 11, pages294–296(2014) 12

Machine learning model (GWAVA)

- A modified version of the random forest algorithm
- Three classifiers to discriminate between the disease variants and variants from each of the three control sets

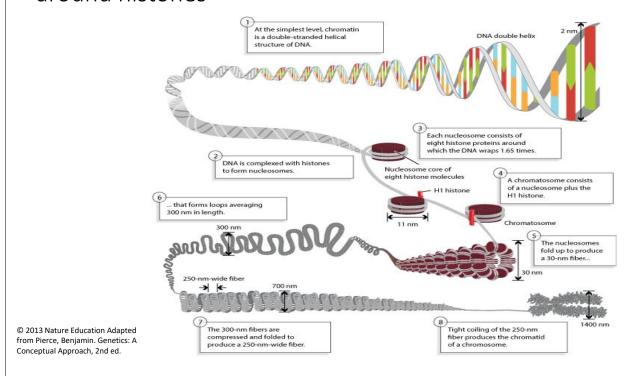


Nature Methods volume 11, pages294–296(2014) 13

Contents

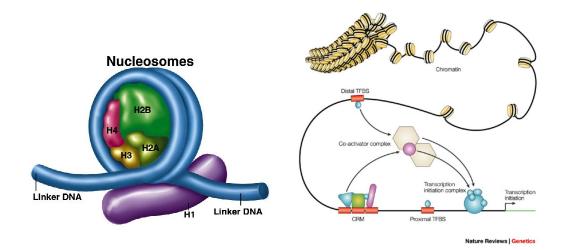
- Introduction to noncoding variants
- Computational methods to prioritize noncoding variants
- Genomic and epigenomic information
- Deep learning methods

Chromosomes are composed of DNA tightly-wound around histones



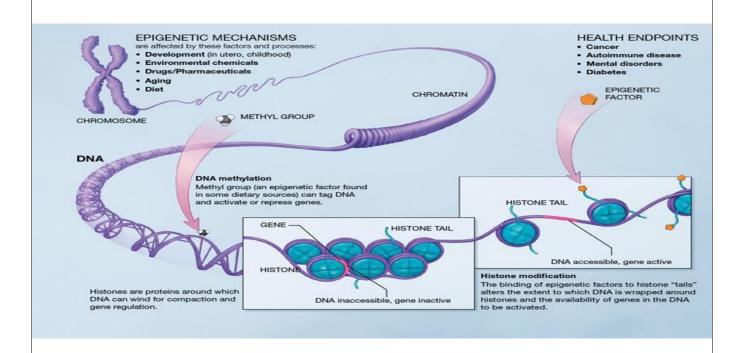
15

Histone and transcription



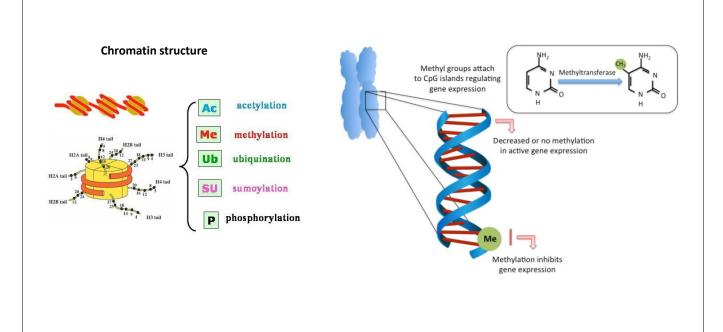
Histone proteins need to be modified and DNA needs to be released for transcription to take place.

Epigenetic mechanisms



http://commonfund.nih.gov/epigenomics/figure.aspx

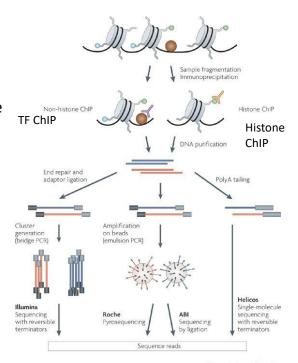
Histone modification DNA methylation



Nevin C and Carroll M, J Hum Genet Clin Embryol 2015, 11:8004

Chromatin Immunoprecipitation

- Chromatin Immunoprecipitation (ChIP)
 - "freeze" the protein-DNA bonds inside the cell nucleus
 - Extract the DNA bound by a specific protein
- Antibodies are used to select specific proteins or nucleosomes
 - Enriches for DNA-fragments that are bound to these proteins or nucleosomes
- Selected fragments can be either hybridized to a microarray (ChIP-chip) or sequenced on NGS platform (ChIP-seq).
- · Extract DNA bound in vivo by
 - · Modified histones
 - · Specific transcription factors
 - RNA Pol II

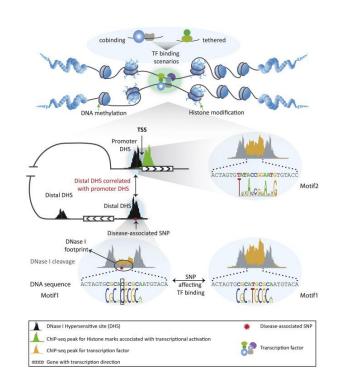


Nature Reviews | Genetics

19

Regulation

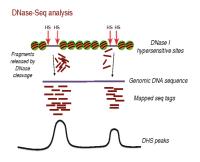
- Transcription factors (TFs)
- Regulate gene transcription by binding to specific DNA elements such as promoters, enhancers, silencers.

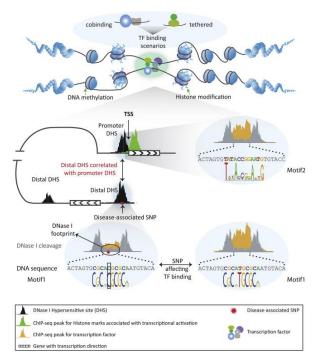


Genomics Proteomics Bioinformatics 11 (2013) 135 - 141

Regulation

- Chromatin accessibility
- Hallmark of regulatory DNA regions
- characterized by DNase I hypersensitivity (DHS)
- DHSs are regions of chromatin that are sensitive to cleavage by the DNase I enzyme.

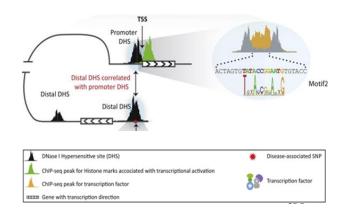




Genomics Proteomics Bioinformatics 11 (2013) 135 - 141

DNase I footprinting

- DNase I footprinting
 - Detects DNA sequences that are protected from cleavage by Dnase I because they are bound by regulatory factors.

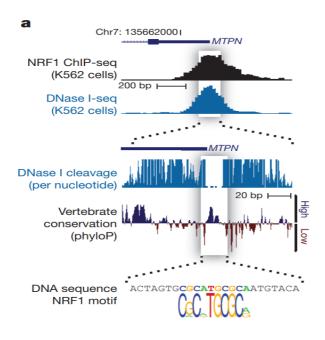


Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 22

-11-

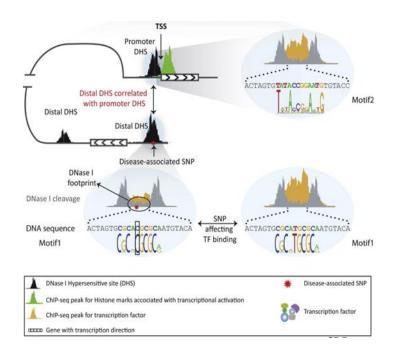
DNase I footprinting

 DNase I footprinting of K562 cells identifies the individual nucleotides within the MTPN promoter that are bound by NRF1.



23

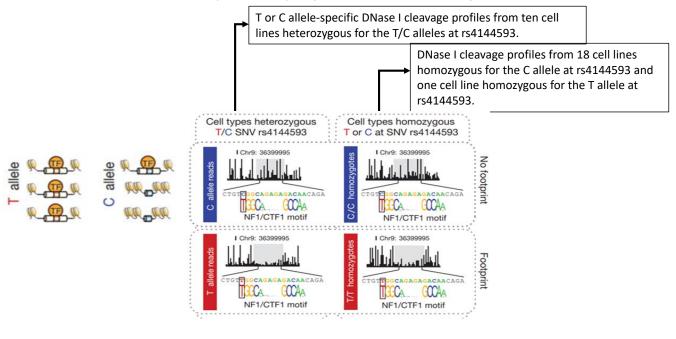
Noncoding variants and TF binding



Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 24

Noncoding variants and TF binding

- DNase I footprints mark sites of in vivo protein occupancy.
- Effect of T/C SNV rs4144593 on protein occupancy and chromatin accessibility.

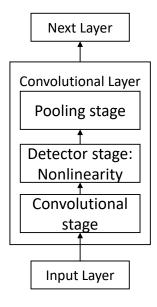


Neph, S. et al. Nature 489, 83-90 (2012) 25

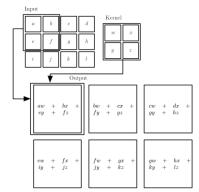
Contents

- Introduction to noncoding variants
- Computational methods to prioritize noncoding variants
- Genomic and epigenomic information
- · Deep learning methods
 - Convolutional neural network

A typical convolutional neural network layer



· Convolution stage

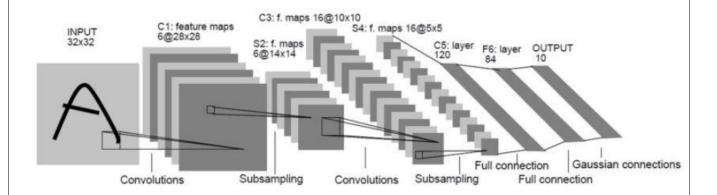


- Nonlinearity function
 - · Rectified linear unit (ReLU)
 - Tanh, etc.
- · Pooling stage
 - Max pooling
 - Average pooling, etc.

Goodfellow et al., Deep Learning

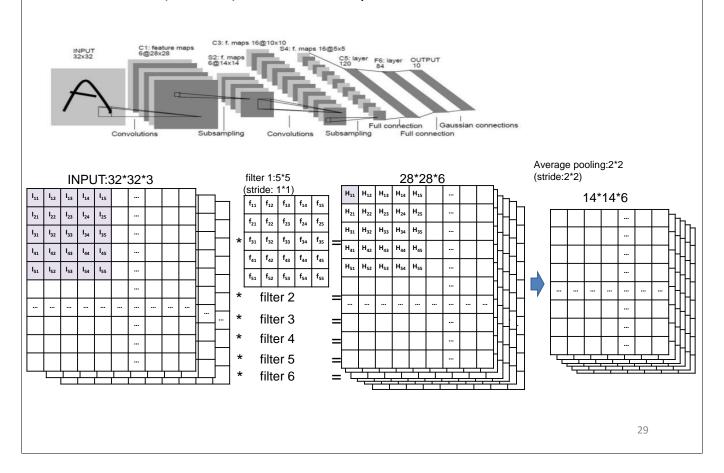
27

LeNet-5 (1998): An example of 2-D convolution



LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE. 86(11): 2278 - 2324.

LeNet-5 (1998): An example of 2-D convolution

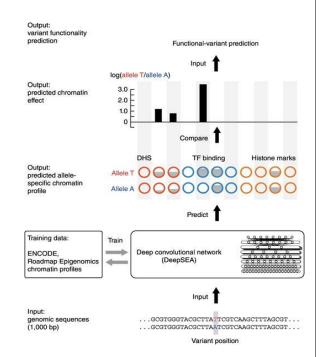


Contents

- Introduction to noncoding variants
- Computational methods to prioritize noncoding variants
- Genomic and epigenomic information
- Deep learning methods
 - Convolutional neural network
 - <u>DeepSea</u>: Predicting effects of noncoding variants with deep learning—based sequence model

Sequence-based algorithmic framework DeepSEA (deep learning—based sequence analyzer)

- Goal: Predict with single-nucleotide sensitivity the effects of noncoding variants on transcription factor (TF) binding, DNA accessibility and histone marks of sequences
 - Simultaneously predict large-scale chromatin-profiling data, including TF binding, DNase I sensitivity and histonemark profiles
 - 2. Predicting allele-specific chromatin profile and chromatin effect
 - 3. Those predictions are used to estimate functional effects of noncoding variants



Nat Methods. 2015 October; 12(10): 931–934 31

Genomics Proteomics Bioinformatics 11 (2013) 135-141

Datasets

Genome-wide chromatin profiles

- From the Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics projects
- 690 TF binding profiles for 160 different TFs, 125 DNase I hypersensitivity (DHS) profiles and 104 histone mark profiles (a total of 919 peak sets). (Supplementary Table 1)
- 521.6 Mbp of the genome (17%)
 were found to be bound by at
 least one measured TF and were
 used as a regulatory information—
 rich and challenging set for
 training the DeepSEA regulatory
 code model

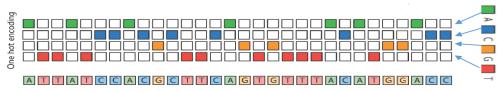
Experiment	Description
DNA methylation	In 82 human cell lines and tissues: A549, Adrenal gland, AG04449, AG04450, AG09309, AG09319, AG10803, AoSMC, BE2 C, BJ, Brain, Breast,
	Caco-2, CMK, ECC-1, Fibrobl, GM06990, GM12878, GM12891, GM12892, GM19239, GM19240, H1-hESC,
	HAEpiC, HCF, HCM, HCPEpiC, HCT-116, HEEpiC, HEK293, HeLa-S3, Hepatocytes, HepG2, HIPEpiC, HL-6
	HMEC, HNPCEpiC, HPAEpiC, HRCEpiC, HRE, HRPEpiC, HSMM, HTR8svn, IMR90, Jurkat, K562, Kidne
	Left Ventricle, Leukocyte, Liver, LNCaP, Lung, MCF-7, Melano, Myometr, NB4, NH-A, NHBE, NHDF-neo, NT
	D1, Osteoblasts, Ovcar-3, PANC-1, Pancreas, PanIslets, Pericardium, PFSK-1, Placenta, PrEC, ProgFib, RPTEC SAEC, Skeletal muscle, Skin, SkMC, SK-N-MC, SK-N-SH, Stomach, T-47D, Testis, U87, UCH-1 and Uterus
TF ChIP-seq	A total of 119 TFs:
·	ATF3, BATF, BCLAF1, BCL3, BCL11A, BDP1, BHLHE40, BRCA1, BRF1, BRF2, CCNT2, CEBPB, CHD2,
	CTBP2, CTCF, CTCFL, EBF1, EGR1, ELF1, ELK4, EP300, ESRRA, ESR1, ETS1, E2F1, E2F4, E2F6, FOS,
	FOSL1, FOSL2, FOXA1, FOXA2, GABPA, GATA1, GATA2, GATA3, GTF2B, GTF2F1, GTF3C2, HDAC2,
	HDAC8, HMGN3, HNF4A, HNF4G, HSF1, IRF1, IRF3, IRF4, JUN, JUNB, JUND, MAFF, MAFK, MAX,
	MEF2A, MEF2C, MXI1, MYC, NANOG, NFE2, NFKB1, NFYA, NFYB, NRF1, NR2C2, NR3C1, PAX5, PBX
	POLR2A, POLR3A, POLR3G, POU2F2, POU5F1, PPARGC1A, PRDM1, RAD21, RDBP, REST, RFX5, RXRA
	SETDB1, SIN3A, SIRT6, SIX5, SMARCA4, SMARCB1, SMARCC1, SMARCC2, SMC3, SPI1, SP1, SP2,
	SREBF1, SRF, STAT1, STAT2, STAT3, SUZ12, TAF1, TAF7, TAL1, TBP, TCF7L2, TCF12, TFAP2A, TFAP26
	THAP1, TRIM28, USF1, USF2, WRNIP1, YY1, ZBTB7A, ZBTB33, ZEB1, ZNF143, ZNF263, ZNF274 and ZZZ
Histone ChIP-seq	A total of 12 types:
	H2A.Z, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2 and H4K20me1
DNase-seq	In 125 cell types or treatments:
	8988T, A549, AG04449, AG04450, AG09309, AG09319, AG10803, AoAF, AoSMC/serum_free_media, BE2_C, B
	Caco-2, CD20, CD34, Chorion, CLL, CMK, Fibrobl, FibroP, Gliobla, GM06990, GM12864, GM12865, GM1287
	GM12891, GM12892, GM18507, GM19238, GM19239, GM19240, H7-hESC, H9ES, HAc, HAEpiC, HA-h, HA-s
	HBMEC, HCF, HCFaa, HCM, HConF, HCPEpiC, HCT-116, HEEpiC, HeLa-S3, HeLa-S3_IFNa4h, Hepatocyte
	HepG2, HESC, HFF, HFF-Myc, HGF, HIPEpiC, HL-60, HMEC, HMF, HMVEC-dAd, HMVEC-dBl-Ad,
	HMVEC-dBI-Neo, HMVEC-dLy-Ad, HMVEC-dLy-Neo, HMVEC-dNeo, HMVEC-LBI, HMVEC-LLy,
	HNPCEpiC, HPAEC, HPAF, HPDE6-E6E7, HPdLF, HPF, HRCEpiC, HRE, HRGEC, HRPEpiC, HSMM,
	HSMMemb, HSMMtube, HTR8svn, Huh-7, Huh-7.5, HUVEC, HVMF, iPS, Ishikawa_Estr, Ishikawa_Tamox, Jurkat, K562, LNCaP, LNCaP, Andr, MCF-7, MCF-7 Hypox, Medullo, Melano, MonocytesCD14+, Myometr.
	NB4, NH-A, NHDF-Ad, NHDF-neo, NHEK, NHLF, NT2-D1, Osteobl, PANC-1, PanIsletD, PanIslets, pHTE,
	PrEC, ProgFib, PrEC, RPTEC, RWPEI, SAEC, SKMC, SK-N-MC, SK-N-SH, RA, Stellate, T-47D, Th0, Th1, Th
	Urothelia, Urothelia_UT189, WERI-Rb-1, WI-38 and WI-38_Tamox
DNase footprint	In 41 cell types:
or tase receptant	AG10803, AoAF, CD20+, CD34+ Mobilized, fBrain, fHeart, fLung, GM06990, GM12865, HAEpiC, HA-h, HC
	HCM, HCPEpiC, HEEpiC, HepG2, H7-hESC, HFF, HIPEpiC, HMF, HMVEC-dBl-Ad, HMVEC-dBl-Neo,
	HMVEC-dLy-Neo, HMVEC-LLy, HPAF, HPdLF, HPF, HRCEpiC, HSMM, Th1, HVMF, IMR90, K562, NB-
	NH-A, NHDF-Ad, NHDF-neo, NHLF, SAEC, SkMC and SK-N-SH RA
MNase-seq	In GM12878 and K562
3C-carbon copy (5C)	In GM12878, K562, HeLa-S3 and H1-hESC
GWAS SNP targeting	296 noncoding GWAS SNPs were assigned a target promoter

Nat Methods. 2015 October; 12(10): 931–934

Table 1 Summary of ENCODE avacula

Datasets for chromatin profile prediction

- Input
 - From 521,6 Mbp sequences (the human GRCh37 reference genome)
 - 1,000-bp DNA sequence
 - Centered on each 200-bp bin
 - 400-bp flanking regions at the two sides for extra contextual information
 - · One hot encoding



- Output
 - · 919 chromatin features
 - A chromatin feature was labeled 1 if more than half of the 200-bp bin is in the peak region and 0 otherwise.
 - Example:
 - Whether DNase-seq in a cell-line T-47D has a peak in the 200-bp bin
 - Whether TF FOXA1 in a brain cell-line has a peak in the 200-bp bin

Nat Methods. 2015 October; 12(10): 931–934 33

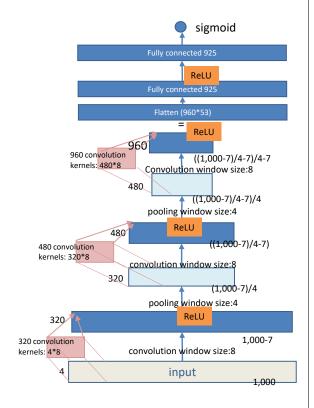
Training and Test sets

- Test: Chromosome 8 and 9
- Validation:
 - 4,000 samples on chromosome 7 spanning the genomic coordinates 30,508,751–35,296,850.
 - Hyperparameter selection
- Training: Rest of the autosomes

Nat Methods. 2015 October; 12(10): 931–934

DeepSEA model configuration

- · Model Architecture
- 1. Convolution layer (320 kernels. Window size: 8. Step size: 1)
- 2. Pooling layer (Window size: 4. Step size: 4)
- 3. Convolution layer (480 kernels. Window size: 8. Step size: 1)
- 4. Pooling layer (Window size: 4. Step size: 4)
- 5. Convolution layer (960 kernels. Window size: 8. Step size: 1)
- 6. Fully connected layer (925 neurons)
- 7. Sigmoid output layer



Nat Methods. 2015 October; 12(10): 931–934 35

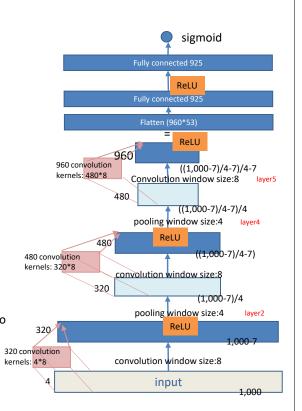
DeepSEA model configuration

· Training of the DeepSEA model.

objective = NLL +
$$\lambda_1 ||W||_2^2 + \lambda_2 ||H^{-1}||_1$$

NLL = $-\sum_s \sum_t \log(Y_t^s f_t(X^s) + (1 - Y_t^s)(1 - f_t(X^s)))$

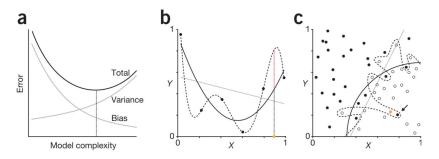
- s: index of training samples
- t: index of chromatin features.
- Y_t^s : 0,1 label for sample s, chromatin feature t.
- f_t (X^s): the predicted probability output of the model for chromatin feature t given input X^s.
- Regularization Parameters:
 - L2 regularization (λ₁): 5e-07
 - L1 sparsity (λ₂): 1e-08
 - Dropout proportion (proportion of outputs randomly set to 0):
 - Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other layers: 0%



Nat Methods. 2015 October; 12(10): 931–934 36

Regularization

- When model complexity increases, generally bias decreases and variance increases
- Minimize the total error.



(b) Polynomial fits to data

- Underfitting (gray diagonal line, linear fit),
- Reasonable fitting (black curve, third-order polynomial)
- Overfitting (dashed curve, fifth-order polynomial).

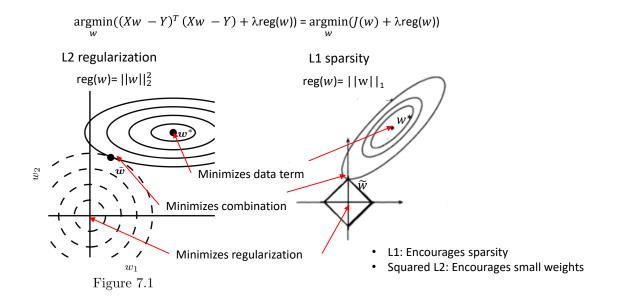
(c) Two-class classification

- Underfitted (gray diagonal line)
- Reasonable (black curve)
- Overfitted (dashed curve) decision boundaries.

NATURE METHODS | VOL.13 NO.9 | SEPTEMBER 2016 | 703

Regularization (L1 norm and L2 norm)

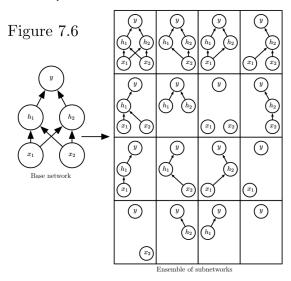
To reduce its generalization error but not its training error



Goodfellow, Deep Learning, 2016 $_{38}$

Regularization for Deep Learning

Dropout



Goodfellow, Deep Learning, 2016

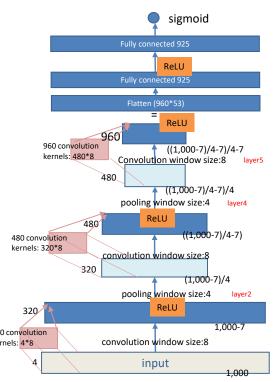
DeepSEA model configuration

• Training of the DeepSEA model.

objective = NLL +
$$\lambda_1 ||W||_2^2 + \lambda_2 ||H^{-1}||_1$$

$$\text{NLL} = -\sum_{s} \sum_{t} \log(Y_{t}^{s} f_{t}(X^{s}) + (1 - Y_{t}^{s})(1 - f_{t}(X^{s})))$$

- s: index of training samples
- *t*: index of chromatin features.
- Y_t^s : 0,1 label for sample s, chromatin feature t.
- f_t (X^s): the predicted probability output of the model for chromatin feature t given input X^s.
- Regularization Parameters:
 - L2 regularization (λ₁): 5e-07
 - L1 sparsity (λ₂): 1e-08
 - Dropout proportion (proportion of outputs randomly set to 0):
 - Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other ^{320 convolution} layers: 0%



Nat Methods. 2015 October; 12(10): 931–934

model.lua

require 'nn'

require 'cunn'

require 'math'

nfeats = 4

width = trainData.data:size(3)

height = 1

ninputs = nfeats*width*height

nkernels = {320,480,960}

model = nn.Sequential()

model:add(nn.SpatialConvolutionMM(nfeats, nkernels[1], 1, 8, 1, 1, 0):cuda())

model:add(nn.Threshold(0, 1e-6):cuda())

model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())

model:add(nn.Dropout(0.2):cuda())

model:add(nn.SpatialConvolutionMM(nkernels[1], nkernels[2], 1, 8, 1, 1, 0):cu

da())

model:add(nn.Threshold(0, 1e-6):cuda())

model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())

model:add(nn.Dropout(0.2):cuda())

model: add (nn. Spatial Convolution MM (nkernels [2], nkernels [3], 1, 8, 1, 1, 0): cuda ())

model:add(nn.Threshold(0, 1e-6):cuda())

model:add(nn.Dropout(0.5):cuda())

nchannel = math.floor((math.floor((width-7)/4.0)-7)/4.0)-7

model: add (nn. Reshape (nkernels [3]*nchannel))

model:add(nn.Linear(nkernels[3]*nchannel, noutputs))

model: add (nn. Threshold (0, 1e-6): cuda ())

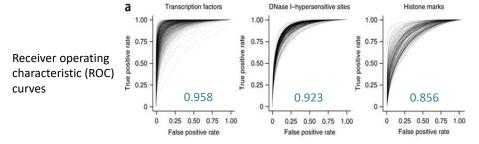
 $model: add (nn.Linear (noutputs \, , \, noutputs) : cuda ()) \\$

model:add(nn.Sigmoid():cuda())

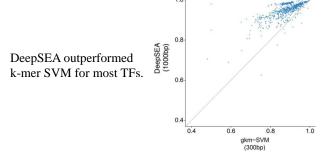
print(model)

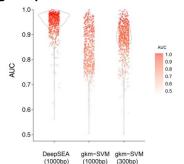
Nat Methods. 2015 October; 12(10): 931-934

Chromatin profile prediction performance



Performance comparison with gkm-SVM for TF binding site prediction

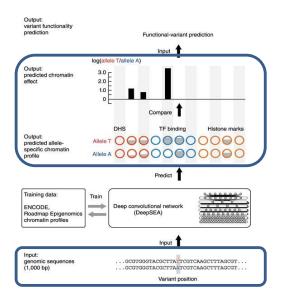




Gapped *k*-mer SVM did not gain performance from increasing size of context sequences

Nat Methods. 2015 October; 12(10): 931–934 42

Chromatin effects of single-nucleotide alteration in noncoding sequence



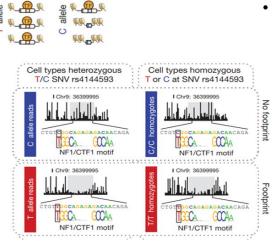
- Computational mutation scanning to assess the effect of mutating every base of the input sequence
- The effect of a base substitution on a specific chromatin feature prediction

$$\log_2\left(\frac{P_0}{1-P_0}\right) - \log_2\left(\frac{P_1}{1-P_1}\right)$$

P₀: probability predicted for the original sequence P₁: probability predicted for the mutated sequence

Nat Methods. 2015 October; 12(10): 931–934

Chromatin effects of single-nucleotide alteration in noncoding sequence



Evaluation data

- Allelic imbalance information from digital genomic footprinting (DGF) DNase-seq data on ENCODE cell lines.
- Allelic imbalance: one allele is observed in DNase-seq data significantly more often than the other allele at a heterozygous site for a single-cell-type sample
- 57,407 allelically imbalanced SNPs from 35 cell types with DHS predictors
 - 28,918 reference allele-biased variants
 - 28,489 alternative allele- biased variants

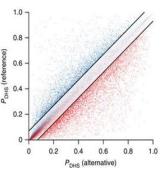
Neph, S. et al. Nature 489, 83-90 (2012).

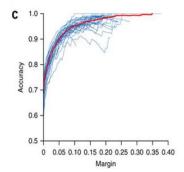
Nat Methods. 2015 October; 12(10): 931–934 444

Performance for predictions for DNase I—sensitive alleles

(b)

- Y-axis: predicted prob. that reference allele is DHS
- X-axis: predicted prob. that alternative allele is DHS
- Red dot: experimentally determined alternative allele—biased variant by DGF data
- Blue dot: experimentally determined reference allele—biased variant by DGF data
- Black lines: the margin, or the threshold of predicted probability differences between the two alleles for classifying high-confidence predictions (margin = 0.07 for this plot).



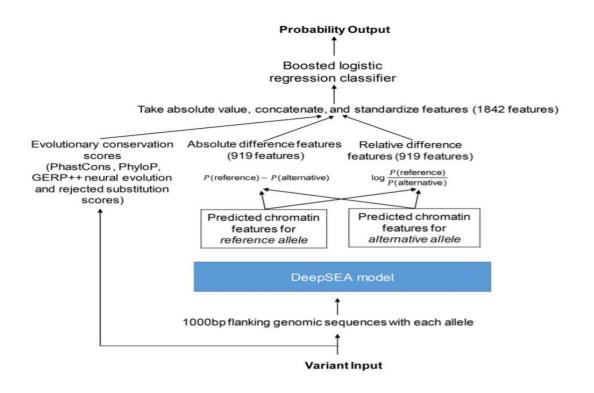


(c) Accuracy.

- Blue line: performance for a different cell type
- Red line: overall performance on allelically imbalanced variants for all 35 cell types

Nat Methods. 2015 October; 12(10): 931–934

Functional SNP prioritization



Nat Methods. 2015 October; 12(10): 931–934 46

-23-

Data for functional SNP prioritization

Positive standards

- Human Gene Mutation Database (HGMD) annotated noncoding regulatory mutations
- Noncoding eQTLs from the GRASP (Genome-Wide Repository of Associations between SNPs and Phenotypes) database
- Noncoding trait-associated SNPs identified in GWAS studies from the US National Human Genome Research Institute's **GWAS Catalog**

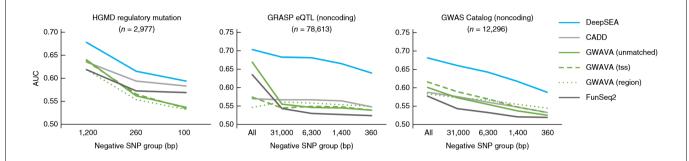
Negative standards

- Several sets of negative SNPs with different distances to positive standard SNPs
- Closest 1000 Genomes SNPs in the full set, 25% random subset and 5% random subset of 1000 Genomes SNPs with minor allele frequency greater than 0.01.
- More...

Nat Methods. 2015 October; 12(10): 931–934

Performance of functional SNP prioritization

AUC values for tenfold cross-validation



- x axes: average distances of negative-variant groups to a nearest positive variant
- All: randomly selected negative 1000 Genomes SNPs

Nat Methods. 2015 October; 12(10): 931-934 48

Contents

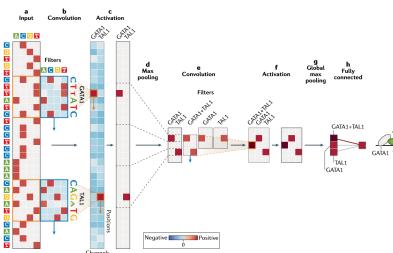
- Introduction to noncoding variants
- · Computational methods to prioritize noncoding variants
- · Genomic and epigenomic information
- Deep learning methods
 - Convolutional neural network
 - DeepSea: Predicting effects of noncoding variants with deep learning based sequence model
 - DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107

49

Recall) CNN and modelling TF binding sites

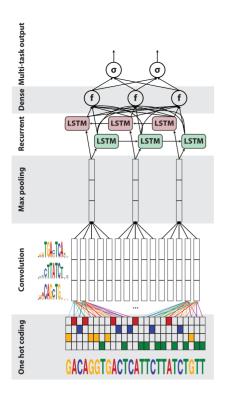
 CNN predicts the binding affinity of the TAL1–GATA1 transcription factor complex.



Nature reviews genetics volume 20:389 July 2019

- a: One-hot encoding of the DNA sequence.
- b: First convolutional layer scans the input sequence using filters, which are exemplified by position weight matrices of the GATA1 and TAL1 transcription factors.
- c: Negative values are truncated to 0 using ReLU activation function.
- d: In the max pooling operation, contiguous bins of the activation map are summarized by taking the maximum value for each channel in each bin.
- e: The second convolutional layer scans the sequence for pairs of motifs and for instances of individual motifs.
- **f**: ReLU activation function is applied.
- g: The maximum value across all positions for each channel is selected.
- h: A fully connected layer is used to make the final prediction.

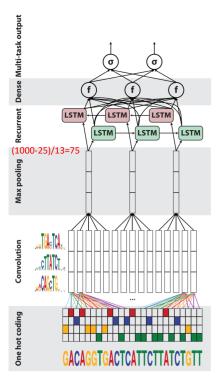
DanQ model



- · Graphical illustration of the DanQ model
- Input sequence
 - One hot encoded into a 4-row bit matrix.
- Convolution layer with rectifier activation
 - Acts as a motif scanner across the input matrix
 - Produces an output matrix with a row for each convolution kernel and a column for each position in the input.
- Max pooling
 - Reduces the size of the output matrix along the spatial axis, preserving the number of channels.

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107

DanQ model



- · Graphical illustration of the DanQ model
- BLSTM layer
 - Considers the orientations and spatial distances between the motifs.
- Two fully connected layers
 - A dense layer of rectified linear unit
 - Sigmoid non-linear transformation to a vector that serves as probability predictions of the epigenetic marks to be compared via a loss function to the true target vector.
- The rationale for BLSTM layer
 - Motifs can follow a regulatory grammar
 - *in vivo* spatial arrangements and frequencies of combinations of motifs,
 - A feature associated with tissue-specific functional elements such as enhancers

forward_lstm = LSTM(input_dim=320, output_dim=320, return_sequences=True)
backward_lstm = LSTM(input_dim=320, output_dim=320, return_sequences=True)
brnn = Bidirectional(forward=forward_lstm, backward=backward_lstm, return_sequences=True)

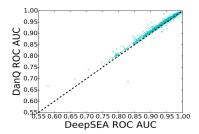
model.add(brnn)
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(input_dim=75*640, output_dim=925))
model.add(Activation('relu'))
model.add(Dense(input_dim=925, output_dim=919))
model.add(Activation('sigmoid'))

Note (1000-25)/13=75

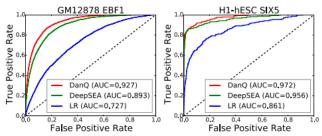
Nucleic Acids Research, 2016, Vol. 44, No. 11 e107

Performance comparison

- Training, validation and testing sets were downloaded from the DeepSEA website
- Input: reference sequence
- Output: A length 919 binary target vector from 919 ChIP-seq and DNase-seq peak sets from uniformly processed ENCODE and Roadmap Epigenomics data releases



DanQ outperforms DeepSEA for 94.1% of the targets with an absolute improvement of around 1-4% for most targets



- Logistic regression (LR) is an effective predictor, with ROC AUC scores typically over 70%.
- Given the sparsity of positive binary targets ($\sim 2\%$), the ROC AUC statistic is highly inflated by the class imbalance

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107

Performance comparison

- A better metric to measure the performance is the area under precision-recall curve (PR AUC)
- Neither the precision nor recall take into account the number of true negatives

PR AUC metric is less prone to inflation by the class imbalance than the ROC AUC

metric is GM12878 EBF1 H1-hESC SIX5 DanQ (AUC=0.291) DanQ (AUC=0.469) DeepSEA (AUC=0.187 DeepSEA (AUC=0.287)

• LR models achieve a PR AUC below 5% for the two examples

AUC DanQ PR DeepSEA PR AUC

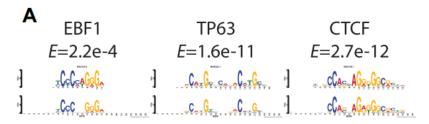
Performance gap between DanQ between DeepSEA is much more pronounced under the PR AUC statistic than under the ROC AUC statistic

97.6% of all DanQ PR AUC scores surpass DeepSEA PR AUC scores

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107

Position frequency matrices, or motifs

- Convert the kernels from the convolution layer of the DanQ models to position frequency matrices, or motifs.
- Align these motifs to known motifs using the TOMTOM algorithm.
- Of the 320 motifs learned by the DanQ model, 166 significantly match known motifs (E < 0.01).



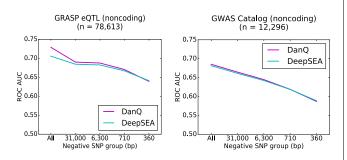
- Top: EBF1, TP63 and CTCF motif logos from JASPAR
- Bottom: three convolution kernels

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10 $\frac{7}{55}$

Functional SNP prioritization

- Prioritize functional SNPs based on differences of predicted chromatin effect signals between reference and variant allele sequences.
- Training and testing SNP sets from DeepSEA
 - Positive functional variant data
 - eQTL SNPs from the GRASP database
 - non-coding trait-associated SNPs identified in GWAS studies from the US NHGRI GWAS Catalog
 - Negative 'non-functional' variant
 - SNPs in 1000 Genomes project.
- Train and evaluate using boosted ensemble classifiers.

- DanQ outperforms DeepSEA across most of the testing sets
 - Performance difference with 0.5-2% in ROC AUC metric.



Nucleic Acids Research, 2016, Vol. 44, No. 11 e107₅₆

Summary

- Noncoding variants
- Computational methods to prioritize noncoding variants based on genomic and epigenomic information
 - GWAVA: Genome-wide annotation of variants
- Deep learning methods based on genomic sequence
 - DeepSea: Predicting effects of noncoding variants with deep learning based sequence model
 - DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
- If you are interested, see studies in related topics.
 - DeepC: predicting 3D genome folding using megabase-scale transfer learning (Nature Methods 17:1118–1124(2020))
 - Predicting 3D genome folding from DNA sequence with Akita (Nature Methods 17:1111–1117(2020))