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강의개요 

  

Bioinformatics for Cancer Immunotherapy 
 

    

본 강의에서는 차세대 암 치료 기법으로 떠오르고 있는 면역항암 치료의 원리와, 

이를 수행하는 데에 필요한 다양한 생물정보학 분석 기법을 설명한다. 효율적인 암 

면역치료의 기반이 되는 암 면역 특성과 환경에 대한 분석, 특히 암 유전체 분석, 

변이 분석, 항원 분석의 원리를 이해하고 나아가 이를 다양한 데이터에 활용할 수 

있는 기초지식을 다시는 것을 목표로 한다. 

 

  강의는 다음의 내용을 포함한다: 

⚫ 암 면역치료의 역사와 개요 

⚫ 암 면역치료의 방법 및 연계된 유전체 분석 기법  

⚫ 효과적인 암 정밀 면역치료를 위한 암 면역특성 및 면역환경 분석 기법 

⚫ 생물정보학 분석 도구 소개 

 

*참고강의교재:  

    - 유인물 배포 예정 

 

*교육생준비물:  

  

 

* 강의: 김상우 교수 (연세대학교 의과대학) 
 

  



Curriculum Vitae 
 

Speaker Name: Sangwoo Kim, Ph.D. 

▶Personal Info 

Name   Sangwoo Kim 

Title          Associate Professor 

Affiliation        Yonsei Univ. College of Medicine 

▶Contact Information  

Address 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea 

Email swkim@yuhs.ac  

Phone Number 010-3407-9861 

 

Research interest : Genomic analysis of human disease, Algorithm development 

 

 

Educational Experience 

2002   B.S. in Computer Science, KAIST 

2004   M.S. in Bioinformatics, KAIST 

2010   Ph.D. in Bioinformatics, KAIST 

 

Professional Experience 

2010-2013 Post-doc research fellow, UC San Diego 

2014-2019 Assistant Professor, Yonsei University College of Medicine 

2020-  Associate Professor, Yonsei University College of Medicine 

 

Selected Publications (5 maximum) 

1. Kim TM, Yang IS, Seung BJ, Lee S, Kim D, Ha YJ, Seo MK, Kim KK, Kim HS, Cheong JH, Sur JH, 

Nam H and Kim S*, Cross-species Oncogenic Signatures of Breast Cancer in Canine Mammary 

Tumors, Nature Communications, 2020 11, article number 3616 

2. Jo S-Y, Kim E, and Kim S*, Impact of mouse contamination in genomic profiling of patient-

derived models and best practice for robust analysis, Genome Biology 2019, (20):231 

 3. Kim J, Kim D, Lim JS, Maeng JH, Son H, Kang H-C, Nam H, Lee JH* and Kim S*, The use of 

technical replication for detection of low-level somatic mutations in next-generation sequencing, 

Nature Communications 2019, article 1047 

 4. Lee G, Ryu HJ, Choi JW, Kang H, Yang WI, Yang IS, Seo M-K, Kim S* and Yoon SO*, 

Characteristic gene alterations in primary gastrointestinal T and NK cell lymphomas, Leukemia 

2019 33:1797-1832 

5. Kim S, Kim HS, Kim E, Lee MG, Shin E-C, Paik S, and Kim S*, Neopepsee: accurate genome-level 

prediction of neoantigens by harnessing sequence and amino acid immunogenicity information, 

Annals of Oncology 2018, 29(4):1030-1036 

 

mailto:swkim@yuhs.ac


Bioinformatics & Machine Learning for Life Scientists

BIML-2021

안녕하십니까?

한국생명정보학회의 동계 워크샵인 BIML-2021을 2월 15부터 2월 19일까지 개최합니

다. 생명정보학 분야의 융합이론 보급과 실무역량 강화를 위해 도입한 전문 교육 프

로그램인 BIML 워크샵은 2015년에 시작하였으며 올해로 7차를 맞이하게 되었습니다. 

유례가 없는 코로나 대유행으로 인해 올해의 BIML 워크숍은 온라인으로 준비했습니

다. 생생한 현장 강의에서만 느낄 수 있는 강의자와 수강생 사이의 상호교감을 가질 

수 없다는 단점이 있지만, 온라인 강의의 여러 장점을 살려서 최근 생명정보학에서 

주목받고 있는 거의 모든 분야를 망라한 강의를 준비했습니다. 또한 온라인 강의의 

한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 

BIML 워크샵은 전통적으로 크게 생명정보학과 AI, 두 개의 분야로 구성되어오고 있으

며 올해 역시 유사한 방식을 채택했습니다. AI 분야는 Probabilistic Modeling, 

Dimensionality Reduction, SVM 등과 같은 전통적인 Machine Learning부터 Deep 

Learning을 이용한 신약개발 및 유전체 연구까지 다양한 내용을 다루고 있습니다. 생

명정보학 분야로는, Proteomics, Chemoinformatics, Single Cell Genomics, Cancer 

Genomics, Network Biology, 3D Epigenomics, RNA Biology, Microbiome 등 거의 모

든 분야가 포함되어 있습니다. 연사들은 각 분야 최고의 전문가들이라 자부합니다. 

이번 BIML-2021을 준비하기까지 너무나 많은 수고를 해주신 BIML-2021 운영위원회

의 김태민 교수님, 류성호 교수님, 남진우 교수님, 백대현 교수님께 커다란 감사를 드

립니다. 또한 재정적 도움을 주신, 김선 교수님 (AI-based Drug Discovery), 류성호 교

수님, 남진우 교수님께 감사를 표시하고 싶습니다. 마지막으로 부족한 시간에도 불구

하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 강의자료를 만드는데 노력하셨을 뿐만 

아니라 실시간 온라인 Q&A 세션까지 참여해 수고해 주시는 모든 연사분들께 깊이 

감사드립니다. 

2021년 2월 

한국생명정보학회장 김동섭
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본강의 자료는 한국생명정보학회가 주관하는 KSBi-BIML 

2021 워크샵 온라인 수업을 목적으로 제작된것으로 해당

목적 이외의 다른 용도로 사용할 수없음을 분명하게 알립니

다.  수업 목적으로 배포 및 전송 받은 경우에도 이를 다른

사람과 공유하거나 복제, 배포, 전송할 수없습니다. 

만약 이러한 사항을 위반할 경우 발생하는 모든 법적 책임은

전적으로 불법 행위자 본인에게 있음을 경고합니다.
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Cancer Immunotherapy:

Exploit host’s immune system to treat cancer
- Generate or augment an immune response against cancer

4/62

Immune and cancer

• Immunosuppressed patients have a higher risk for cancer

• Spontaneous regression occurs one in every 60,000 to 100,000 ca
ncer cases

Chida et al, Surg Case Rep 2017

First visit 1 week later CD3+CD4+ T-cell No cancer
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Cancer Immunotherapy as a new hope 

6/62

The history of immunotherapy

erysipelas

Coley, Annals of Surgery, 1981
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Adaptive Immunity / T-cell activation 

8/62

Tumor Antigens

TAA (Tumor Associated Antigen): presented in tumor cells + (some normal cells)
TSA (Tumor Specific Antigen): presented only in tumor cells

-4-
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Immunoediting of cancer

• Elimination (immunosurveillance):
• Initial damage (possible destructi

on) of tumor cells by innate imm
une system

• Tumor antigen presentation and 
attacked by CD4+, CD8+ T-cells

• Equilibrium:
• Survived tumor cells do not progr

ess and remain dormant

• Escape:
• Cancer cells grow and metastasiz

e due to the loss of control by the 
immune system

10/62

Immune evasion

• Paralyze CTLs and NK cells by s
ecreting TGF-β or immunosup
pressive factors

• Recruitment of regulatory T-ce
ll (Tregs) and myeloid-derived 
suppressor cells (MDSCs)

• Loss of MHC class I expresssion

Hannahan and Weinberg, 
Hallmarks of cancer: The Next 
Generation, Cell 2011

-5-



CURRENT APPROACHES 

11

12/62

1. Adoptive Cell Transfer
• TILs (tumor-infiltrating lymphocytes) – m

etastatic melanoma

- tissue surrounding tumor may contain i
mmune cells and antitumor activity
- culture TILs and re-infuse
- deplete endogenous immune cells

• TCR (T-cell receptor)
- give cells new receptor
- viral vector in patient’s T-cell
- T-cell receptor must be genetically mat
ch to the patient’s immune type

• CAR (chimeric antigen receptor)
- artificial, antibody-like protein
- antibody (binding to cancer antigen)
- cell activating receptor
- stimulatory molecule

Courtney Humpreies, Nature 504, S13-15, 2013
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Adverse effects and personalization

• Adverse effects in ACT
- cytokine storm

• Need to target “tumor-specific” antigen
• Neoantigen?

Courtney Humpreies, Nature 504, S13-15, 2013

14/62

2. Checkpoint inhibitors
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Immunomodulatory mABs to overcome 
immunosuppression

16/62

Immunomodulatory mABs to overcome 
immunosuppression
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Ipilimumab in melanoma (1861 patients)
22%: > 3 years
17%: > 7 years
Average survival (6-9 month to >1 yrs)

The benefits from cancer immunotherapy

18/62

3. Cancer Vaccine

• Cancer vaccines:
- Injection of tumor antigens
- generate new antigen-specific 
T-cell response
- amplification of existing T-cell 
response
- increase breadth and diversity 
of T-cell response

Hu et al, Nat. Rev. Immunol 2018
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How cancer vaccine works

• Antigen injection (or DC vaccine):
• Migration of APC to present antigens to T-cells (signal 1)
• Co-stimulatory signals (signal 2)
• Migration of T-cells to tumor site
• Kill tumor cells (cytotoxicity, IFNγ, TNF..)

Hu et al, Nat. Rev. Immunol 2018

20/62

Editorial, Nat. Biotech. 2017 35(2)

• Neoantigen prediction for markers of checkpoint inhibitor
• Neoantigen prediction for finding tumor-specific (non-self) antigens for ACT

Neoantigen prediction is a key challenge

-10-



TUMOR MUTATION BURDEN 
(TMB)

21

22/62

Who can benefit from checkpoint inhibitor?

64 melanoma patients (25 discovery set, 39 
validation set) treated with Ipilimumab .

Patients with high mutation burden: good survival, 
long-term benefit

-11-
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Tumor mutation burden

24/62

Inconsistence of somatic mutation calls

Cai et al, Sci Rep. 2016

Low depth (~50x) Targeted, High depth (~370x)

• The number of somatic mutations 
are largely dependent on the 
variant caller used

-12-
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Tumor mutation burden

Cai et al, Sci Rep. 2016

• The number of somatic mut
ations are largely dependent 
on the read depth

• And the read depth is simply 
not uniform

26/62

Fixing pipeline

Lim SM et al, Communications Biology, in press
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Potential pitfalls (use with care)

HLA TYPING IN THE ANTIGEN 
PROCESSING

28
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somatic (passenger) mutations

amino acid alternation

protein degradation

neopeptides

binding to MHC molecule

peptide-MHC presentation

recognition by T-cell

immune response

Neoantigen processing

30/62

somatic (passenger) mutations

amino acid alternation

protein degradation

neopeptides

binding to MHC molecule

peptide-MHC presentation

recognition by T-cell

immune response

Neoantigen processing
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MHC (Major Histocompatibility Complex)

32/62

HLA (Human Leukocyte Antigen)

-16-
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HLA alleles are ethnic specific

34/62

MHC-peptide binding

But it is highly dependent on the HLA alleles
- That’s why we need to know HLA allele (of the patient)
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HLA typing methods

1. Serology-based typing

• Use of microcytotoxicity
– complement mediated 
lysis 

• Simple and low-cost
• Mostly used in HLA-A and 

HLA-B
• Can type allele groups an

d alleles only 

2. Sanger sequencing

3. Sequence-specific Oligonucleotide Hybridization (SSO)

• Amplify targeted regions with biotin-labeled primers
• Hybridized sequences emit fluorescence 

36/62

NGS-based HLA typing

• PROS
• Use of (already) produced NGS-data
• No extra-cost
• Fast

• Threat
• Short-read
• HLA genes are GC-rich: lower-sequencing coverage

-18-
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NGS-based HLA typing

Bauer et al, Briefings in Bioinformatics. 2018

38/62

Assembly-based HLA typing

HLAminer
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Alignment-based HLA typing

Polysolver

MHC BINDING PREDICTION

40
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MHC-peptide binding

Can we predict if a given peptide will bind to MHC?

42/62

• SYFPEITHI: using PSSM

Prediction algorithms

• SVMHC: using Support Vector Machine

• S-HMM: using Hidden Markov Model

-21-
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NetMHC: Classification of MHC-I binding peptides using ANN

ANN based algorithms

NetMHC-3.0

Approximation of 8, 10, 11 from 9 mer model

NetMHC-4.0

Gapped alignment to ANN
: 9 to 8~11 mer

44/62

Experimental data are biased to major HLA alleles
▶ lack of training data in rare alleles
▶ lack of accuracy

Build a classifier that work on HLA-peptide pair

Regarding all HLA-types at once

NetMHCpan: Prediction on all HLA-A/B alleles, simultaneously

-22-
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We demonstrate that a simple combination of NetMHC and NetMHCpan gives the highest performance 
when the allele in question is included in the training and is characterized by at least 50 data points with 
at least ten binders. Otherwise, NetMHCpan is the best predictor.

Too many methods. Need a consensus

NetMHCcons: Prediction on all HLA-A/B alleles, simultaneously

46/62

Benchmarks and competitions

-23-



ANTIGEN PROCESSING STEPS 

47

48/62

somatic (passenger) mutations

amino acid alternation

protein degradation

neopeptides

binding to MHC molecule

peptide-MHC presentation

recognition by T-cell

immune response

Neoantigen processing revisited

-24-
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Antigen Processing Pathways for MHC class I/II

Backert and Kohlbacher, Genome Medicine, 2015

50/62

Proteasomal cleavage

None of the predictors achieved an MCC above 0.3

: the in vitro data do not capture the full complexity of proteasomal 
processing in vivo. The value of predictions of proteasomal cleavag
e is thus rather limited

In vitro data created with purified proteasomes in the laboratory
(in vivo data are harder to collect)

C-terminus: commonly determined by proteasomal cleavage
N-terminus: can undergo further trimming by proteases located 
in the cytosol or ER

-25-
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TAP transport prediction

• Primarily owing to the scarcity of data, there are few published methods on 
TAP transport prediction.

• No unbiased blind benchmarks for TAP transport methods have been publi
shed so far, and a comparative assessment of the various methods is thus 
currently difficult

52/62

Binding (kinetic) stability
We also developed a bioinformatics method to predict pMHC-I stab
ility, which suggested that 30% of the nonimmunogenic binders hith
erto classified as “holes in the T-cell repertoire” can be explained as 
being unstably bound to MHC-I.

Considering MHC-binding stability, not affinity

-26-
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NetMHCstab: predicting stability of pMHC-I complexes

stable

Prediction on the stability

54/62

Prediction on pMHC-TCR binding

Fritsch et al, Cancer Immunology Research. 2014

-27-
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TCR immunogenicity prediction

The current performance of immunogenicity predictors is certainly not satisfying. 
The amount and reliability of experimental data on T-cell reactivity is certainly one reason for this. But clearly our lack of underst
anding of the details of the processes leading to central and peripheral tolerance hamper the development of more predictive met
hods too (Toussant et al, BCB11, 2011)

NEOANTIGEN ANALYSIS
& INTEGRATED PIPELINES

56
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Somatic mutation derived neopeptide 

58/62

And Neoantigens

Oiseth et al, J Cancer Metastasis and Treatment, 2017
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Overall Pipeline

60/62

Things need to be resolved for practical application
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For genome-level application, the followings should be automated or properly handled:

1. Accurate calling of somatic mutations from NGS data

2. Conversion of genetic variants to protein sequence alteration
1. must consider transcript structures, or which to use for backbone
2. need to cut into shorter peptides (e.g. 9-mer)

3. Inference of HLA alleles

4. Expression level analysis of:
1. immune-regulatory genes
2. genes containing candidate neopeptides

5. Calculation of immunogenicity features including:
1. MHC-binding affinity (IC50)
2. And other information (as much as possible)

6. Effective binding of information sources and determination of final call

NGS based Genome-level application

62/62

Sora Kim et al, Annals of Oncology, 2018

Neopepsee: accurate genome-level prediction of neoantigens

Neopepsee
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Neopepsee determines the sequence of neopeptides regarding the most expressed transcript isoform.

Regarding Transcript-specific peptides

64/62

1. MHC binding and presentation
1. predicted IC50 value
2. percentile rank
3. protein cleavage
4. TAP (transporter associated with antigen processing) efficiency
5. T-cell recognition

2. Amino-acid characteristics
1. amino acid hydrophobicity
2. amino acid polarity and charge

3. Auxiliary features
1. DAI: differential agretopicity
2. AAPP: amino acid pairwise contact potential

4. Sequence similarity to known epitopes

Considering multiple features at once

-32-
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Percentile rank: 
rank of the predicted affinity of the given peptide 
sequence among ~400,000 random natural 
peptides

MHC binding affinity in IC50 score is not available for rare HLA alleles.

On rare HLA alleles

66/62

• MHC score
• TAP score
• Cleavage score
• Combined score

Automatic calculation of multiple features

-33-
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Large, aromatic 
chains

P4, 5, 6

P1, 2, 9

pMHC-I presentation for recognition by TCR

68/62

Amino acids features - hydrophobicity
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Amino acid features – polarity and charged values

70/62

Entropy and molecular weight

-35-
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IEDB Known Epitope sequence
approximately 400,000

ERQDYR

EKQDYR

Vaccinia virus

patient origin sequence

Protein sequence local alignment

BLOSUM 100 Matrix

Protein sequence similarity

72/62

Single feature based classifier Inter-dependency of features

Selecting what to use (feature selection)

-36-
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1. Naïve Bayes and 
2. locally weighted Naïve Bayes

3. Random forest 

4. Support vector machine

Integration by machine learning

74/62

1,113 experimentally 
validated epitopes

311 wild-type assignable 
epitopes

Positive dataset (N=311)

Negative dataset (N=14,633)

22,245 common (MAF>0.05), 
non-synonymous SNVs

reduced to 14,633

wild-type: 
corresponding human reference protein

Training data set

-37-
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Classification power of 
Neopepsee 

vs.
single IC50 threshold and 

single rank threshold

Sora Kim et al

Neopepsee Accuracy

76/62

Peptide sequence similarity
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Validation of scores

78/62

Application to TCGA data
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Community-based Guideline for 
Neoantigen Prediction

- 6 subjects 
(3 with metastatic melanoma, 3 with NSCLC)

- 25/28 teams participated
- each team reported 7 to 81,904 candidates

- median 204
- 608 were selected and validated (multimer-

based assay)
- 37/608 (6%) were immunogenic

80/62

Community-based Guideline for 
Neoantigen Prediction

- Derive informative features 
- binding affinity, Tumor abundance, Binding stability, Hydrophobicity
- Agretopicity, Foreignness

-40-
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Conclusion

• 다양한 cancer immunotherapy 의 발전으로 자신의 면역 시
스템을 이용한 치료가 각광받고 있음

• 더 큰 효과와 적은 부작용을 위하여 환자, 종양 특이적
antigen 발굴이 필요함

• HLA type, MHC binding, Antigen processing 등 다양한 step 
단계를 예측할 수 있는 computational algorithm 이 존재하
며, 발전하고 있음

• NGS 에 기반하여 면역항암치료의 반응을 예측하고, 환자
특이적 치료를 할 수 있는 분석을 진행할 수 있음

82
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