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Curriculum Vitae

Speaker Name: Sangwoo Kim, Ph.D.
T » Personal Info

Name Sangwoo Kim
Title Associate Professor
Affiliation Yonsei Univ. College of Medicine

» Contact Information
Address 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea

Email swkim@yuhs.ac
Phone Number 010-3407-9861

Research interest : Genomic analysis of human disease, Algorithm development

Educational Experience

2002 B.S. in Computer Science, KAIST
2004 M.S. in Bioinformatics, KAIST
2010 Ph.D. in Bioinformatics, KAIST

Professional Experience

2010-2013 Post-doc research fellow, UC San Diego
2014-2019 Assistant Professor, Yonsei University College of Medicine
2020- Associate Professor, Yonsei University College of Medicine

Selected Publications (5 maximum)

1. Kim TM, Yang IS, Seung BJ, Lee S, Kim D, Ha YJ, Seo MK, Kim KK, Kim HS, Cheong JH, Sur JH,
Nam H and Kim S*, Cross-species Oncogenic Signatures of Breast Cancer in Canine Mammary

Tumors, Nature Communications, 2020 11, article number 3616

2. Jo S-Y, Kim E, and Kim S* Impact of mouse contamination in genomic profiling of patient-

derived models and best practice for robust analysis, Genome Biology 2019, (20):231

3. Kim J, Kim D, Lim JS, Maeng JH, Son H, Kang H-C, Nam H, Lee JH* and Kim S* The use of
technical replication for detection of low-level somatic mutations in next-generation sequencing,

Nature Communications 2019, article 1047

4. Lee G, Ryu HJ, Choi JW, Kang H, Yang WI, Yang IS, Seo M-K, Kim S* and Yoon SO%*
Characteristic gene alterations in primary gastrointestinal T and NK cell lymphomas, Leukemia
2019 33:1797-1832

5. Kim S, Kim HS, Kim E, Lee MG, Shin E-C, Paik S, and Kim S*, Neopepsee: accurate genome-level
prediction of neoantigens by harnessing sequence and amino acid immunogenicity information,
Annals of Oncology 2018, 29(4):1030-1036
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Cancer Immunotherapy:

Exploit to treat cancer
- Generate or augment an immune response against cancer

Immune and cancer

« Immunosuppressed patients have a higher risk for cancer

* Spontaneous regression occurs one in every 60,000 to 100,000 ca

NCer cases
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First visit 1 week later CD3+CD4+ T-cell No cancer

Chida et al, Surg Case Rep 2017




Cancer Inmunotherapy as a new hope

Surgery, chemotherapy, and radiation have been the backbone of cancer treatment for decades,
but recent advances are allowing doctors to further individualize their patients’ treatment with

precision medicine.>?

TRADITIONAL MEDICINE PRECISION MEDICINE
SURGERY TARGETED
Physical removal of THERAPY

the tumor from the
patient’s body*

CHEMOTHERAPY

Medical treatment
that attacks fast- @
growing cells, =

such as cancer®

RADIATION
High-energy rays are
particles that damage or
kill cancer cells®

Radiotherapy

by using X-Rays

3000 B.C. - 1890

Surgical Treatments 1900

Surgical treatment or
cauterization of tumors as
the only therapeutic option

Marie and Pierre Curie
started to treat tumor

Chemotherapy
Development of antitumor
drugs for the treatment of
hematological and solid
tumors

Medical treatment
that targets cancer-
specific genetic
changes used to slow
tumor growth and/or
kill cancer cells’

IMMUNOTHERAPY
Medical treatment
that helps the
patient’s own immune
system to fight the
cancer®?

Targeted Therapy
Tyrosine Kinase Inhibitors
and Monoclonal Antibodies
directed to specific ti -
and molecular alteration

Checkpoint Inhibitors
Use of Monoclonal
Antibodies  able to
stimulate the immune
system against cancers

The history of immunotherapy

New York Times - July 29, 1908

ERYSIPELAS GERMS
- ASCURE FOR CANCER

Dr. Coley's Remedy of Mixed
Toxins Makes One Disease
Cast Qut the Other.

MANY CASES CURED HERE

Physiclan Has Used the Cure for 15
Years and Treated 430 Cases—
Probably 150 Sure Cures.

Follow!ng news from St. Louv's that
two men have been cured of cancer in
the City Hospital there by the use of
@& fluld discovered by Dr. Willlam B.
Coley of New York, it came out yester-
day that nearly 100 cases of that sup-
posely ircuradble disease have been cured
in this city during the last few years, all
through the use of the fluld discovered
by Dr. Caley.

erysipelas

CONTRIBUTION TO THE KNOWLEDGE OF
SARCOMA.

By WILLIAM B. COLEY, M.D,,
OF NEW YORK.

I. A Case oF PeriosiEaL RouND-CELLED SARCOMA OF THE
METACARPAL BONE; AMPUTATION OF THE FOREARM; GEN-
ERAL DissemiNaTION IN Four WEEKS; DEATH Six WEEKS
LATER.

II. Tue GENerAL Course AND PrOGNOsIS OF SarcoMA, BASED
UroN AN ANaLysis OF NINETY UNPUBLISHED CAsEs.

—_— —
III. THE TREATMENT OF SArRcoMA BY InocuraTion WiITH
ErvysipeLas, With A RerorT oF THREE RECENT (ORrIGI-

NAL) CasEks.

THE patient a young lady, @t. 18, had been in perfect health
I o from earliest childhood. The family history was likewise good
with the ption of a remote dency, and the fact that
an ancestor, three generations before, had died of ‘‘cancer” of the lip,
presumably epithelioma.

In the early part of July, 1890, she received a shight blow upon the
back of the right hand. The hand became a little swollen and some-
what painful the first night. The next few days the pain became a
trifle less and the swelling subsided, but did not entirely disappear.
About a week later the swelling again began to increase very slowly,
and the pain became more severe. She consulted a physician at the
time of the injury, but there being no evidence of anything more than
an ordinary bruise the usual local applications were applied.

August 12. The pain and swelling continuing, she again sought

'y 1

Read before the Surgical Section of the New York Academy of Medicine, April
27,1891, (With a report of three cases treated since).

(199)

Coley, Annals of Surgery, 1981




Adaptive Immunity / T-cell activation

PROCESS: T-CELL ACTIVATION

- stimulates = ; 1. T-cell receptor
m;“ i gives rise to Delll1dr|t|c binds to peptide
M cel on MHC protein,
antigen -
presenting cell becomes activated.

o

MHC Class |
Antigen

¥

B cell

helper T cell

cytotoxlc T cell MHC
@ Class Il
L s )
helper T cells
memory ctive 7

D‘asma cells rnemory B cells cytotoxic T cells = cytotoxxc T cells
6 Vi

Cytotoxic
T cells

* segeted ES ° 2. Activated T cells
N > ‘ « LA C.ytokines multiply, differentiate,
Helper T cells 5 and enter blood.
defend against extracellular pathogens by binding defend against intracellular pathogens .
to antigens, thereby neutralizing pathogens or and cancer by binding to and initiating
making them better targets for phagocytes and apoptosis in infected cells or cancer cells
complement proteins
fTumor Antigens
a Antigens: high tumour specificity b Antigens: low tumour specificity
Mutation Tumour-specific expression Tissue-specific expression Overexpression

Most tumours Many tumours i Melanomas Some tumours

= W Bl W

v
t
O

T t !
& T Demethylation T T
3 YRR /)\\o\w\ : |
E yAvAY/ VN/N/S WA YA NN NN/ NS/ NN N/ NI/

1
'
'
1
i
'
'
i
'
1
'
|
'
'
'
i
'
'
'
'
'
L
i
'
'
|
'
1
'
'

Demethylation \

@/»

00 n'm .
' No HLA

* Spermatocytes
* Spermatogonia S;:]r:;l cells no:lni;l cells| |
¢ Trophoblasts

O
‘ =

S

Normal cell

Nature Reviews | Cancer

TAA (Tumor Associated Antigen): presented in tumor cells + (some normal cells)
TSA (Tumor Specific Antigen): presented only in tumor cells




Immunoediting of cancer

Transformed “Eigrf:_g'e: Tumor  NKR Imri(gjr?et:c:?]rc:?fé);is:wn Normal
cells . ar:tigens ligands and/or apoptosis) tissue . . . . .
® ~ O am + Elimination (immunosurveillance):
o Cardnogens @92 oXs) « Initial damage (possible destructi
\ . lcvdg"“mm e on) of tumor cells by innate imm
une system
Elimination Equilibrium Egps  Tumor antigen presentation and
Qi OO attacked by CD4+, CD8+ T-cells
B Teell * PO-L1 Galectin-1 DO
y ) 6‘ Antigen loss . Equilibrium:
- 9<d ©) /' MHC loss M
— « Survived tumor cells do not progr
: and citing e ess and remain dormant
Innate & IL~.12/ CTLA-4 T CTLA-4
adaptive TNZ -1 S 1
oy | G2 " ‘é@ﬁ’ ™'+ Escape:
@ Nomaicon i * Cancer cells grow and metastasiz

kt P)
€ 'Y
”3 96?)
oL

Extrinsic tumor

suppression

Highly immunogenic

transformed cell
. Poorly immunogenic

] and immunoevasive
. transformed cells

e due to the loss of control by the
immune system

Cancer Immunoediting

Immune evasion

EGFR
inhibitors

&)

Cyclin-dependent
kinase inhibitors

Paralyze CTLs and NK cells by s

]

Aerobic glycolysis
inhibitors

Sustaining
proliferative
signaling

Proapoptotic
BH3 mimetics

PARP
inhibitors

4

Evading
growth
Suppressors

ecreting TGF-8 or immunosup
pressive factors

Immune activating
anti-CTLA4 mAb

Recruitment of regulatory T-ce
Il (Tregs) and myeloid-derived
suppressor cells (MDSCs)

Avoiding

E— —— Telomerase )« Loss of MHC class | expresssion
death immortality Inhibitors
Genome Tumor-
instability & promoting
mutation inflammation
Inducing Activating Selective anti-
angiogenesis invasion & inflammatory drugs
metastasis
Inhibitors of Inhibitors of
VEGF signaling HGF/c-Met

Hannahan and Weinberg,
Hallmarks of cancer: The Next
Generation, Cell 2011
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1. Adoptive Cell Transfer

CELLULAR ATTACK

Adoptive cell transfer (ACT) attacks cancer using either tumour-infiltrating lymphocytes (TILs) or genetically
engineered T cells. Engineered cells are given either a new T-cell receptor (TCR) or an antibody-like molecule called
a chimaeric antigen receptor (CAR); both activate the T cell when they encounter a particular cancer antigen.

Harvest T cells from
biopsy or blood.

\ @Genetmally
: ; engineer cells.

gAR

Add a chimaeric antigen

Add T cell receptor receptor (CAR), which recognizes
(TCR) for a cancer antigen. a specific cancer antigen.
Isolate and expand Tumour cell Tumour cell

tumour-infiltrating
lymphocytes (TILs).

@ Tumour
A 6 antigen

@ @ Immune depletion T-cell
with chemotherapy receptor
or radiation allows
@ introduced T cells
@ to take hold and

TIRUDNY; Tcell CD3 complex sends
@ & activation signal Tcell

Tumour
antigen

MHC

complex
presents
antigens
to T cells

Co-stimulatory
molecules boost
the T cell response

T-cell activation T-cell activation

Infuse cells back into patient,
where they attack the tumour.

Courtney Humpreies, Nature 504, S13-15, 2013

* TILs (tumor-infiltrating lymphocytes) - m

etastatic melanoma

- tissue surrounding tumor may contain i
mmune cells and antitumor activity

- culture TILs and re-infuse

- deplete endogenous immune cells

* TCR (T-cell receptor)
- give cells new receptor
- viral vector in patient’s T-cell
- T-cell receptor must be genetically mat
ch to the patient’s immune type

* CAR (chimeric antigen receptor)
- artificial, antibody-like protein
- antibody (binding to cancer antigen)
- cell activating receptor
- stimulatory molecule




Adverse effects and personalization

Table 1

Select examples of adverse events resulting from clinical application of immunotherapies targeting public antigens

Antigen Immunctherapy Adverse event Cause Ref.
MART-1/MelanA TCR Fatal neural and cardiac toxicity High levels of inflammatory cytokines [30]
alone or in combination with semi-acute
heart failure and epileptic seizure

Uveitis, Hearing loss, Loss of pigmentation ~ On-target activity of TCR-engineered T [247]
cells targeting normal cells expressing the
cognate epitope

TCR + DC vaccination Acute respiratory distress High levels of inflammatory cytokines [31]
NY-ESO-1 TCR (Affinity enhanced)  Skin rash with lymphocytosis, diarrheal Autologous GVHD-like syndrome possibly  [32]
syndrome due to loss of self-tolerance
MAGE-A3 TCR (Affinity enhanced)  Fatal cardiogenic shock Cross-reactivity with an unrelated epitope [28]
from the Titin protein presented on cardiac
tissue
TCR (Affinity enhanced)  Mental status changes, comas, Reactivity to similar MAGE-A12-derived [33]
necrotizing leukoencephalopathy with epitope presented on neural cells

extensive white matter defects

« Adverse effects in ACT
- cytokine storm

* Need to target “tumor-specific” antigen
* Neoantigen?

Courtney Humpreies, Nature 504, S13-15, 2013

2. Checkpoint inhibitors

a ‘b

Cancer cell

MHC1

PD-L1 PD-L2 ' Cell surface
: antigen

PD-L1 PD-L2

Peptide

TIL PD-1 PD-1

TCR

ot

4 \/

4-1BBL GITRL OX40L CD40 CD86 MHCII

L ¢
D86 cpyssPL2 PO-U

Galectin-9
CD8o CD80 CD112 PSer PD-L1 CD80 MHCII
CD113 CEACAM-1 CD86




Immunomodulatory mABs to overcome
immunosuppression

: Cell surface
e : o antigen PD-L1 PD-L2
1 H \

Peptide .

PD-L2 PD-L1_ |

V|
CD86 Cp155
80 CD112

CD113 CEACAM-1

P

Immunomodulatory mABs to overcome
immunosuppression

MHCI
—
Peptide

o Cell surface
Ymigen PD-L1 PD-L2

TIL
| Nivolumab (Opdivo)

| Pembrolizumab (Keytruda)

® ® ® @ i
4-1BB GITR OX40 CD40lf CD28 R PD-1 PD-1 TIM-3

A

v
CD86 cpyss P12 PO-U1

80 CD112
CD113 CEACAM-1

4-1BBL GITRL OX40L CD40 CD86
® CDso

DC/APC

4




The benefits from cancer immunotherapy

©
> A
>
1
=
()
bt
=
()
(&)
1
3 A
Ipilimumab in melanoma (1861 patients)
22%: > 3 years
17%: > 7 years
Y Y | Average survival (6-9 month to >1 yrs)

Time

B Combination with genomically
targeted agent and immune
checkpoint therapy

Bl Chemotherapy
I Genomically targeted therapy
B Immune checkpoint therapy

3. Cancer Vaccine

Naive T cell
a Tumour \

% De novo tumour-
specific T cell
response

Tumour cell

Tumour antigens

Pre-existing
tumour-specific

b
T cell
Q¢

Amplification of
existing tumour-
specific T cell
response

Increased breadth
and diversity of
tumour-specific

T cell response

Hu et al, Nat. Rev. Inmunol 2018

Cancer vaccines:

- Injection of tumor antigens

- generate new antigen-specific
T-cell response

- amplification of existing T-cell
response

- increase breadth and diversity
of T-cell response




How cancer vaccine works
Gm /Lymphnode Tumour site \

Tumour Activated
antigen CD8* T cell

Tumour MHC clasy'| Ss@R=—TcR
antigen } [
o0 CD80 or CDg6 —
09 5
L] '
1 ° Naive or memory |
CD8* T cell .
o .
—C A oo ::
APC

\{-----
._\f_
e
o

Tumour
cell lysis
l Released
Naive or memory Activated 1 '0q (Tl
CD4* T cell CD4 Tecell e V¥ antigens

NEVAN I\ ]

+ Antigen injection (or DC vaccine): Hutal, Nat. Rev. Immunol 2013
Migration of APC to present antigens to T-cells (signal 1)

Co-stimulatory signals (signal 2)

* Migration of T-cells to tumor site

Kill tumor cells (cytotoxicity, IFNy, TNF..)

Neoantigen prediction is a key challenge

Tumor Neoantigen Selection Alliance

EDITORIAL | —
nature

biotechnology i - 2
ﬁ—\. " ‘ ’ ‘ | &Penn

@ sianond

The problem with neoantigen prediction

Personalized immunotherapy is all the rage, but neoantigen discovery and validation remains a daunting problem.

ast December, the newly minted Parker Institute for Cancer for a particular allele to build a model with sufficient
Immunotherapy and its venerable East Coast counterpart, the Cancer many MHC alleles lack such data, ‘pan- * meth|
Research Institute, announced the formation of the Tumor Neoantigen  predicting binders based on whethe Vi
Selection Alliance. This initiative, involving researchers from 30 univer- ~ environments have similar binding spec
sities, non-profit institutions and companies, aims to identify software  come to the fore.
t predict mutation-associated cancer antige:
ac nenantioens_fram natient tnmor DNA_The hane is that «

availahle (httn://c

Editorial, Nat. Biotech. 2017 35(2)

Tumor Neoantigen
Selection Alliance

(TESLA)

Improving,canc
therapies for p

* Neoantigen prediction for markers of checkpoint inhibitor
* Neoantigen prediction for finding tumor-specific (non-self) antigens for ACT

-10-




TUMOR MUTATION BURDEN

(TMB)

21

Who can benefit from checkpoint inhibitor?

A Mutational Load

The NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE

Genetic Basis for Clinical Response
to CTLA-4 Blockade in Melanoma
Alexandra Snyder, M.D., Vladimir Makarov, M.D., Taha Merghoub, Ph.D.,

Jianda Yuan, M.D., Ph.D., Jesse M. Zaretsky, B.S., Alexis Desrichard, Ph.D.,
Logan A. Walsh, Ph.D., Michael A. Postow, M.D., Phillip Wong, Ph.D.,

Teresa S. Ho, B.S., Travis J. Hollmann, M.D., Ph.D., Cameron Bruggeman, M.A.,

Kasthuri Kannan, Ph.D., Yanyun Li, M.D., Ph.D., Ceyhan Elipenahli, B.S.
Cailian Liu, M.D., Christopher T. Harbison, Ph.D., Lisu Wang, M.D.,
Antoni Ribas, M.D., Ph.D., Jedd D. Wolchok, M.D., Ph.D.,
and Timothy A. Chan, M.D., Ph.D

64 melanoma patients (25 discovery set, 39
validation set) treated with Ipilimumab .

Patients with high mutation burden: good survival,
long-term benefit

No. of Exomic Missense Mutations

P=0.009 by
Mann-Whitney test
[
17504 17504
1500 P=0.01 by 1500
Mann-Whitney test @
12504 1250+
10004 . 1000 %
7504 - 7504
5004 . 500 —tepe—
- o -
2504 e 2504 S W
. a “ee
s N o
Longterm  Minimal or Longterm  Minimal or
benefit no benefit benefit no benefit
Discovery Set Validation Set

B Survival in Discovery Set

Survival (% of patients)

/

<100 mutations (N=8)

>100 mutations (N=17)

P=0.04 by
log-rank test

40 60 80
Months

-11-




Tumor mutation burden
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2 7R
0.01|-4
0.001 L.

#total_somatic_mutation

« T M ion B TMB) =
umor Mutation Burden ( ) total_targeted_genome_size(Mb)

Inconsistence of somatic mutation calls

A B

Strelka

MuTect2

Varscan

Strelka

MuTect2

The number of somatic mutations
are largely dependent on the

C °
p— variant caller used
e 2988, r . -3
[s . 8 —_— | g
. A s § arscan [
Varscan || .., « > 2 il 8 .
P | | S s | | ST
' | I
e SomsicSoiper | | +*, . Somaiciper | (7" {8
§ P o | ’ 3
= £ =}
g [ §
0.81 oar Strelka ||, 8 0.89 ‘ Stelka || "
R 8 e
3 ]
i 0.64 0.63 0.88 || MuTect2 0.87 0.99 | MuTec2
& J
Low depth (~50x) Targeted, High depth (~370x)

Cai et al, Sci Rep. 2016
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Tumor mutation burden

A
- .
¥ .
g : The number of somatic mut
[} o
1]
E ations are largely dependent
o
: on the read depth
=
& :
:
3 i
& :
+ Varscan
Strelka
7 « MuTeer2
Variant allele fraction * Two callers
B Three callers
* All callers
Variants ° A d h d d h M M I
- < Normal alele Nnd the rea ept IS sSimply
=} 4 HAAIC A
& fi
3 not uniform
i) -
[+]
0
=
,_ =
:
12 i
T f————— -— e
UL W SR U511 0O M IR N WNERE S NN (NS 0 DEN RSN 11110 N I 0 .
Variant allele fraction
Cai et al, Sci Rep. 2016
F. [ [ I [
mut/MB mut/MB
(SNV)
5533993 2991871
5.178398 24023
3.056166 1.641857
1459616 1.27743
1471475 1820113
1453428 1.108711
1.706356 1003712
Data preparation
Data preparation TC GA In'house
| Alignment | Fl h t
Alignment to the UCSC build 37 (hgl9) using BWAv0.7.10
o the NCBI build 37 (hg19) using BWA v0.5.9 -~ v0.7.10 | Flow chart 7 ow char
1 BAM file generation
BAM file generation using SAMtools
using SAMtools T
- Non-silent SNVs Duplicati K Filter Criteria
i 3 . - uplication marl . .
 Duplication mark | Somatic mutations from the MAF file were filtered to remove | using Picard v1.119 | :g ;‘{fs m ‘:ZSN;( .
using Picard v1.46 > v1.119 (1) sites in dbSNPbuild 132 7 S G ‘.:h: ::mﬁflc ount< 5
U (2) mutionsin noncoding RNAgenes (4) filter outallele frequency <0.1
. . . 8 <= covered reads in the tumor sample and 6 <= covered | “5: agi';?z:; ;z:dl: :,feﬂg | (5) filter out non-coding region variants
Mutation detection and annotation reads in the normal sample with 20 <= mapping quality g ' (6) Filter out Mapping quality <30
SNV detection Somatic indels l l
using VarScan 2 and et Mutation detection and annotation
SomaticSniper & A;‘:"‘iz:g:g; a:rdvz 0 High probability of being deleterious
P of missense mutations
by Condel
3 SNV detection CNYV detection
Annotation using Mutect? using Excavator ]
using Condel
(the transcript with the greatest effect was used) I
Remove sequencing and alignment artifacts and . . . . .
qmamliy revie‘f‘:fn"mv | Lim SM et al, Communications Biology, in press | Ann“‘ﬂ;‘m |
snpE:

-13-



Potential pitfalls (use with care)

Alfredo Addeo, MD
Oncology Department,
Geneva University
Hospital, Geneva,
Switzerland.

GiuseppeL.Banna,
MD

Division of Medical
Oncology, Cannizzaro
Hospital, Catania, Ital.

Glen J. Weiss, MD,
MBA

Department of
Medicine, Beth srael
Deaconess Medical
Center, Harvard

Tumor Mutation Burden—From Hopes to Doubts

Over the past few years, the development of immune
checkpoint inhibitors has altered the treatment para-
digm in non-small cell lung cancer (NSCLC). Enrich-
ment strategies have identified programmed death-
ligand 1(PD-L1)staining by immunohistochemistry to be
apredic

refractory NSCLC. In particular, Keynote-024' met its pri-

team® recently calculated TMB scores by whole-exome
heckMate-
026 study,® a randomized phase 3 trial comparing
nivolumab with platinum doublet chemotherapy as a
first-line treatment in treatment-naive patients with
NSCLC with PD-L1 expression greater than 5%. Pa-
tients with a high TMB (defined as having =243 mis-

equenc of

mar
free survival (PFS)in PD-L1immunohistochemistry 50%
orgreater for ompared i

based chemotherapy, validating PD-L1immunohisto-
chemistry as a biomarker for OS. Tumor mutation bur-

sense had a prolonged PFS (median PFS of
9.7vs 5.8 months; hazard ratio [HR], 0.62; 95% Cl, 0.38-
1.00) and higher objective response rate (46.8% vs
28.3%) but a nonsignificant OS difference with
nivolumab treatment vs chemotherapy.

den (TMB) h: The

of somatic mutati ancers ranges
from 0.01 mutations/megabase (Mb) to more than
400 Some of these mutations lead to

Boston, Massachusetts.

the translation of novel peptide epitopes or neoanti-
gens that should enhance the immunogenicity of the
tumor by eliciting T-cell repertoires. Initial studies of TMB
were conducted by using whole-exome sequencing on
tumor DNA and case-matched germline DNA.

In one study of advanced-stage NSCLC,? whole-
exome sequencing was performed in 2 independent
cohorts of patients with NSCLC (16 patients in one and

delines from the European Society for Medical
Oncology (ESMO) and ESMO Asia have already incor-
porated TMB as a possible biomarker in advanced
NSCLC, rec the of
plus nivolumab as first-line treatment for patients with
high TMB (>10 mutations/Mb). Supporting evidence
stems from the CheckMate-227 trial, which reported
results for first-line nivolumab plus ipilimumab vs
7 That study an
improved PFS in PD-L1-positive (HR, 0.62; 95% Cl: 0.27-
0.85) and -negative (HR, 0.48; 95% Cl: 0.44-0.88) pa-
tients. At the time of publication, OS data did not meet

Figure. Pitfalls of Tumor Mutation Burden (TMB) for Clinical Application

in Non-Small Cell Lung Cancer

18 in the ather) treated with and

thet

Differences
in gene
panel platform
(ie, different
mutation types
considered)

Turnaround time
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2-3 wk)

Cutoff and
reproducibility
(not yet
prospectively -
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High scoring
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and quality of
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Sample storage

time (may affect
mean mutation
number found)

HLA TYPING IN THE ANTIGEN
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MHC (Major Histocompatibility Complex)
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HLA alleles are ethnic specific

A*0201

0.5454500 0.8627500
0.2701730 0.3648600
0.2327650 0.3096450
0.2057920 0.2698320
0.1827440 0.2358130
0.1612010 0.2040150
0.1396590 0.1722180
0.1166110 0.1381990
0.0896378 0.0983849
0.0522301 . 0.0431701
0.0000000 0.0000000
Image from Solberg et al. (2008) - see www.pypop.org/popdata for more info. Image from Solberg et al. (2008) - see www pypop.org/popdata for more info.

Hyphen used to separate Suffix used to denote
| gene name from HLA prefix | changes in expression
Sepamor | Field Separators

HLA-A*OZ 101101T02N

| HLA Prefix \j_/ | Field 4; used to show
differencesin a
| Field 1; allele group

non-coding region

Ellld 2; specific HLA protein

Fllld 3 used to show a synonymous DNA
sulmﬂmlon within the coding region

© SGE Marsh 04/10

MHC-peptide binding

Binding Peptide Binding Peptide

MHC-1I Molecule

MHC-I Molecule

MLLSVPLLLG EECDSELEIKRY

Fig. 5. 3D structures for two MHC class | molecules with bound peptides lon-
ger than 9 amino acids (PDB references 2CLR and 4JQX). (a) The 10mer pep-
tide MLLSVPLLLG bound to HLA-A*02:01 extends at the C terminus with a
glycine (G) amino acid. The residues at the anchor positions P2 (L) and P9 (L)
are highlighted. (b) The 12mer EECDSELEIKRY bound to HLA-B*44:03 has an-
chors at its second (E) and last (Y) positions and bulges out from the middle
of the MHC bindina aroove

But it is highly dependent on the HLA alleles
- That’s why we need to know HLA allele (of the patient)
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HLA typing methods

1. Serology-based typing 2. Sanger sequencing
A Class | HLA locus
S A . . .
SN Y4+ Use of microcytotoxicity P —=
S omplement - complement mediated e —
\. It " Iy.sis Eaiia, | TRnce-speciic priters e Y
AntkHLA B27 Lyss + Simple and low-cost . =
+ Mostly used in HLA-A and \ Seqiences 1
L= HLA-B
bt o llel
- N % Can type allele groups an
eI comotwal d alleles only e
. e ] L ]
R Y Anti-HLA B40 0 hys Alignment, HLA typing
antibodies

3. Sequence-specific Oligonucleotide Hybridization (SSO)

HLA specific
oligonucleotide

----- 23 p o pe + Amplify targeted regions with biotin-labeled primers
> SN + Hybridized sequences emit fluorescence

& - =l K e Ranannd

PCR
vy B | @ oven B P

oxon 2
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coctsress - - st

NGS-based HLA typing

PROS

Use of (already) produced NGS-data
No extra-cost

Fast

* Threat
Short-read
* HLA genes are GC-rich: lower-sequencing coverage
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NGS-based HLA typing

C

assembly

alignment

L iterative

Tool categories

k-mer seeding [

known HLA reads [

coverage

Bayesian

HLA alleles [

be

ani

spoke reference [
ntrond s2q)

HLAminer
ATHLATES

HLAreporter

Erlichetal
Omixon
HLAssign

Polysolver
PHLAT
HLA-VBSeq

SeqHLA
HLAforest

OptiType

Bauer et al, Briefings in Bioinformatics. 2018

Assembly-based HLA typing

Warren et al. Genome Medicine 2012, 495
hitp:/genomemedicine.com/content/4/12/95

Genome Medicine

METHOD Open Access

Derivation of HLA types from shotgun sequence
datasets

René L Warren', Gina Choe', Douglas J Freeman', Mauro Castellarin', Sarah Munro', Richard Moore' and
Robert A Holt"**

Abstract
The human leukocyte antigen (HLA) is key to many aspects of human physiology and mex
based HLA typing methodologies are targeted approaches requiring the amplification of spe
Whole genome, exome and transcriptome shotgun sequencing can generate prodigious
complexity of HLA loci th a have not been immediately informative regarding HLA
HLAminer, a computation hod for identifying HLA alleles directly from shotgun s
begsc.ca/platform/bioinfo/software/hlaminer). This approach circumvents the additiona
HLA-specific data and capitalizes on the increasing accessibility and affordability of ma

HLAminer

ne. All current sequence-
HLA gene segments.
h

cost of generat
parallel sequencing

HLA reference sequences
genomic or coding sequence

It

Human shotgun sequence datasets
Exon capture, WGS or RNA-Seq

0
]
Q2
<
Targets \ /
TASR -
Targeted, de novo 3
assembly of HLA = 23
- 8%
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seed contig p— &
P £
assemblies | ; 8 HLA
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HLA|=— HLA sequences
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top hits top hits Targeted top hits Read
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Alignment-based HLA typing
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MHC BINDING PREDICTION
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MHC-peptide binding

Binding Peptide Binding Peptide

MHC-II Molecule

MHC-I Molecule

MLLSVPLLLG EECDSELEIKRY

Fig. 5. 3D structures for two MHC class | molecules with bound peptides lon-
ger than 9 amino acids (PDB references 2CLR and 4JQX). (a) The 10mer pep-
tide MLLSVPLLLG bound to HLA-A*02:01 extends at the C terminus with a
glycine (G) amino acid. The residues at the anchor positions P2 (L) and P9 (L)
are highlighted. (b) The 12mer EECDSELEIKRY bound to HLA-B*44:03 has an-
chors at its second (E) and last (Y) positions and bulges out from the middle
of the MHC bindina aroove

Can we predict if a given peptide will bind to MHC?

Prediction algorithms
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ANN based algorithms

NetMHC: Classification of MHC-I binding peptides using ANN

Reliable prediction of T-cell epitopes using neural
networks with novel sequence representations

MORTEN NIELSEN,' CLAUS LUNE ARD,' PEDER WORNING,'
SANNE LISE LAUEMOLLER,” KASPER LAMBERTH,” SOREN BUUS,”
SOREN BRUNAK,' axp OLE LUND'

e al Sequence Analysis, BioCentrum-DTU, Technical University of Denmark,

of Medical Microbiology and Immunology, University of
Denmark

Abstract

In this paper we deseri

an improved neural network method to predict T-cell class I epitopes. A novel
input representation has been developed consisting of a combination of sparse encoding, Blosum encoding,
and input derived from hidden Markov models. We demonstrate that the

Input layer

mbination of several neural

Hidden layer

emes has a performance superior 0 neural networks
eme. The new method is shown to
¢ than that of other methods. By use of muual information calculations we show that - a <

Xi L | L [
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Regarding all HLA-types at once

NetMHCpan: Prediction on all HLA-A/B alleles, simultaneously

v B rccees ey e Tsenc] Experimental data are biased to major HLA alleles
P lack of training data in rare alleles
» lack of accuracy

NetMHCpan, a Method for Quantitative Predictions of
Peptide Binding to Any HLA-A and -B Locus Protein of
Known Sequence

Morten Nielsen'" Claus Lundegaard’, Thomas Blicher', Kasper Lamberth?, Mikkel Handah’, Sune Justesen’, Gustav Roder’, Bjoer Peters”, Bulld a ClaSSifler that Work on HLA_peptlde pair

Alessandro Sette?, Ole Lund’, Soren Buus’

1 Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark, 2Department of Experimental
Immunology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark, 3 La Jolla Institute for Allergy

e | NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction
00| Predictions Integrating Eluted Ligand and Peptide Binding

number

amajor | Affinity Data
develop Input layer
quantita)
predicte| . + . £ - . +
epitope: Vanessa Jurtz,* Sinu Paul,” Massimo Andreatta,” Paolo Marcatili,* Bjoern Peters,” and
can be { Morten Nielsen**
informa
molecul{ Cytotoxic T cells are of central importance in the immune system’s response to disease. They recognize defective cells by binding Hidden layer
pathoge| to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective
develop| step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC
relationd molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained
Citation: { on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been
Sindina 14 reported ining i ion about peptid ing steps in the ion pathway and the length distribution of
naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand Output layer
data leveraging the information from both data types. Large-scal ing of the method an increase in
predictive compared with state-of-the-art methods when it comes to identification of naturally processed ligands,
cancer neoantigens, and T cell epitopes. The Journal of Immunology, 2017, 199: 3360-3368.

Peptide + MHC sequence

inding | u
affinity | ligand

ytotoxic T cells play a central role in the immune reg-  learning algorithms capable of capturing the information in the
ulation of pathogenesis and malignancy. They performthe  experimental binding data in a more effective manner. One such
task of ini the surf: f cells for the non.self novel methad is NNAlion.2 0 allowine the i i f tides
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Too many methods. Need a consensus

NetMHCcons: Prediction on all HLA-A/B alleles, simultaneously

Immunogenetics (2012) 64:177-186
DOI 10.1007/500251-011-0579-8

ORIGINAL PAPER

NetMHCcons: a consensus method for the major
histocompatibility complex class I predictions

Edita Karosiene - Claus Lundegaard - Ole Lund -
Morten Nielsen

Received: 2 July 2011 /Accepted: 28 September 2011 /Published online:

© Springer-Verlag 2011

Abstract A key role in cell-mediated immunity is dedicated
to the major histocompatibility complex (MHC) molecules
that bind peptides for presentation on the cell surface. Several
in silico methods capable of predicting peptide binding to
MHC class I have been developed. The accuracy of these

20 October 2011

methods for alleles with more remote neighbours. The final
method, NetMHCcons, is publicly available at www.cbs.dtu.
dk/services/NetMHCcons, and allows the user in an auto-
matic manner to obtain the most accurate predictions for any
given MHC molecule.

NetMHCpan for N < 50 and Ny, < 10
NetMHC + NetMHCpan otherwise

NetMHCcons =

methods depends on the data available characterizing the
binding ificity of the MHC

It has, moreover,

Kevywords MHC class I- T cell epitope - MHC binding

We demonstrate that a simple combination of NetMHC and NetMHCpan gives the highest performance
when the allele in question is included in the training and is characterized by at least 50 data points with
at least ten binders. Otherwise, NetMHCpan is the best predictor.

Benchmarks and competitions

Journal of Immunological Methods 374 (2011) 26-34

2nd Machine Learning Competition in Inmunology 2012

Contents lists available at ScienceDirect
Sponsors: InCoB 2012 and ICIW 2012

Journal of Immunological Methods Prediction task:

Predict peptides naturally processed by MHC Class | pathway ("eluted peptides™ for each target MHC molecule. For e
target molecule, the competitors are asked to submit a set of predicted eluted peptides from the test set

journal www.el

Research paper

A total of 32 submissions were submitted for the competition. Of these, 24 submissions
(Group 1) provided a set of thresholds (elution score based predictors) for each peptide and
Claus Lundegaard *, Ole Lund, Morten Nielsen Winners  each MHC molecule. Another 8 submissions (Group 2) provided lists of peptides that were

ma predicted as eluted from specific MHC molecules (eluted peptide list based predictors) for
Center for Biological Sequence Analysis. DTU Systems Biology. Buikding 208, Technical University of Denmark, DK-2800 Lyngby, Denmark 2012 cach of 8 studied MHG alleles. The NetVIHG 3 2 server (1D-BENGH) results were used as a
benchmark method

Prediction of epitopes using neural network based methods

ARTICLE INFO ABSTRACT

Article istory: In this paper, we describe the methodologies behind three different aspects of the NetMHC Winning Team Predictor |5 yiction Method Winning
BN family for prediction of MHC class I binding. mainly to HLAs. We have updated the prediction 0. Category
eceived in revised form 23 October servers, NetMHC-32, NetMHCpan-2.2, and a new consensus method, NetMHCcons, which, in
Acteyaed 21 Ocibes 2010 their previous versions, have been evaluated to be among the very best performing MHC: Lundegaard C, Lamberth K, Hamdahl M, Buus S, Lund  ||1D- Group 1
Astatic ontine 31 Ocaober 2010 | 100 O, Nielsen M, Technical University of Denmark BENCH NetMHC 3.2 (Reference) (A*0201
Keyworts ] === NetMHCpan Group 1
i i B*0702,
sicing : = SMM Giguere S, Drouin A, Lacoste A, Laval University, oF ﬁ:?ﬁiﬁllﬁirzgﬁagg H-2D®
e ' | |m—— ANN Canada using the GS kemel and H-
el 80 | mmm ARB kb
|A combination of NethHC, Sjg;gﬁ'
o Nielsen M, et al., Technical University of Denmark 9D NetMHCpan and MHCkernel and
5 0 predictions. s
peid Giguere S, Drouin A, Lacoste A, Laval University, 2D |A SVM classifier and a novel |Group 1:
g' (Canada string kemnel (GS kernel). B*5301
x
N - [A position-specific scoring
< Xiang Z, He Y, University of Michigan Medical School, 4 Group 1
g 40 lAnn Arbor, MI| USA 20D matrix (PSSM) with statistical B*5701
P-value as the cutoff.
Yu Ting Wei, Department of Probability and Statistics (ConsMHC: a °°"5?”5“l:
School of Mathematical Sciences, Peking University; 14A "mgfm f‘?‘“”’fﬁ's”g T Group 2
20 Wen Jun Shen and Hau-San Wong, Department of ;ves::nig NE'{‘D:HC “a“'a reup
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ANTIGEN PROCESSING STEPS

47

Neoantigen processing revisited
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Antigen Processing Pathways for MHC class I/II

Proteasomal TAP HLA T-cell
cleavage transport binding recognition
— — —
Intracellular
antigen Pepti TAP
eptides TCR
HLA class | § —_ g — 555 — —> . 53| cD8 T-cell
S¢S -
-
Proteasome CcD8
ER HLA
HLA
HLA class II — — = CD4 T-cell
Endosome
@ Peptides
Exogenous — —
antigen
HLA T-cell
binding recognition

Backert and Kohlbacher, Genome Medicine, 2015

Protein

Proteasome

Cleavage

ER membrane

Proteasomal cleavage

In vitro data created with purified proteasomes in the laboratory
(in vivo data are harder to collect)

C-terminus: commonly determined by proteasomal cleavage
N-terminus: can undergo further trimming by proteases located
in the cytosol or ER

None of the predictors achieved an MCC above 0.3

: the in vitro data do not capture the full complexity of proteasomal
processing in vivo. The value of predictions of proteasomal cleavag
e is thus rather limited
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TAP transport prediction

Cytosol =
o o0

Protein /: < «Amino acids

~ .
@)—)@—) ,.\Peptldes

Proteasome l

ATP D
ADP + PiDE

RER lumen Peptide ready to be
loaded onto class | MHC
molecule
* Primarily owing to the scarcity of data, there are few published methods on
TAP transport prediction.
« No unbiased blind benchmarks for TAP transport methods have been publi
shed so far, and a comparative assessment of the various methods is thus
currently difficult

Considering MHC-binding stability, not affinity

Peptide-MHC class I stability is a better predictor than
peptide affinity of CTL immunogenicity

Mikkel Harndahl’, Michael Rasmussen’, Gustav Roder’, Ida Dalgaard
Pedersen’!, Mikael Sorensen?, Morten Nielsen® and Soren Buus’

Binding (kinetic) stability

! Laboratory of Experimental Immunology, Faculty of Health Sciences, University of

Copenhagen, Denmark We also developed a bioinformatics method to predict pMHC-I stab
* Center for Biological Sequence Analysis, Department of Systems Biology, Technical ility, which suggested that 30% of the nonimmunogenic binders hith
University of Denmark, Denmark erto classified as "holes in the T-cell repertoire” can be explained as

being unstably bound to MHC-I.
Efficient presentation of peptide-MHC class I (pMHC-I) complexes to immune T cells
should benefit from a stable peptide-MHC-I interaction. However, it has been difficult
to distinguish stability from other requirements for MHC-I binding, for example, affin-
ity. We have recently established a high-throughput assay for pMHC-I stability. Here,
we have generated a large database containing stability measurements of pMHC-I com-
plexes, and re-examined a previously reported unbiased analysis of the relative contri-
butions of antigen processing and presentation in defining cytotoxic T lymphocyte (CTL)
immunogenicity [Assarsson et al., J. Immunol. 2007. 178: 7890-7901]. Using an affinity-
balanced approach, we demonstrated that immunogenic peptides tend to be more stably
bound to MHC-I molecules compared with nonimmunogenic peptides. We also devel-
oped a bioinformatics method to predict pMHC-I stability, which suggested that 30% of
the nonimmunogenic binders hitherto classified as “holes in the T-cell repertoire” can be
explained as being unstably bound to MHC-I. Finally, we suggest that nonoptimal anchor
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Prediction on the stability

NetMHCstab: predicting stability of pMHC-I complexes

Immunology ... ifmiAologqf |
IVTVIS [elNeleA @ ORIGINAL ARTICLE
30 30
NerMHCsTas — predicting stability of peptide-MHC-I complexes; P PR
impacts for cytotoxic T lymphocyte epitope discovery 20 <stab>=2:64 br - atibs TN
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Kasper W. Jorgensen,™* Michael Summary 9
Rasmussen,™ Seren Buus” and -
asmussen,  Soren Buus ant Major histocompatibility complex class 1 (MHC-I) molecules play an
Morten Nielsen™ . . i . .
. essential role in the cellular immune response, presenting peptides to 00
Department of Systems Biology, Centre for toxic T lymphocytes (CTLs) allowing the i « system to scrutinize
Biological Sequence Analysis, Technical Uni- cytotoxic T lymphocytes (CTLs) allowing the immune system to scrutinize
versity of Dermark, Lyngby, *Laboratory of ongoing intracellular production of proteins. In the early 1990s, immuno- N 1 2 3 4 5 6 7 8 9
Experimental Immunology, University of genicity and stability of the peptide-MHC-I (pMHC-I) complex were created by Seq2Logo created by Seq2Logo
Copenhagen, Copenhagen N, Denmark, and shown to be correlated. At that time, ing stability was b
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distinct peptide stability measurements covering 10 different HLA class I » 2
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Prediction on pMHC-TCR binding
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Fritsch et al, Cancer Immunology Research. 2014
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TCR immunogenicity prediction
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ABSTRACT

i Both g of antigen-pr @ pathway including
major histocompatibility complex (MHG) binding and immunogeni-
city prediction of those MHC-binding peptides are essential to
develop a computer-aided system of peptide-based vaccine design
that is one goal of immunoinformatics. Numerous studies have dealt
with modeling the immunogenic pathway but not the intractable

531 properties

1 INTRODUCTION

aided system to design peptide
of immunoinformatics. The major work of previous
studies for peptide vaccine designs is to identify cytotoxic
T lymphocyte (CTL) epitopes and investigate their correspond-
ing immunogenicity. The CTL cells play a critical role in

accines

Drotective immunity by recognizing and eliminating self-altered

Parameters of SVM
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Peptide sequence
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Tung et al. BMC Bioinformatics 2011, 12:446
http://www biomedcentral com/1471-2105/12/446
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POPISK: T-cell reactivity prediction using support
vector machines and string kernels
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The current performance of immunogenicity predictors is certainly not satisfying.
The amount and reliability of experimental data on T-cell reactivity is certainly one reason for this. But clearly our lack of underst

anding of the details of the processes leading to central and peripheral tolerance hamper the development of more predictive met
hods too (Toussant et a/, BCB11, 2011)

NEOANTIGEN ANALYSIS
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Somatic mutation derived neopeptide
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Overall Pipeline

Hundal et al. Genome Medicine (2016)8:11
DOI 10.1186/513073-016.0264-5

Genome Medif

METHOD Open Aq

pVAC-Seq: A genome-guided in silico ®
approach to identifying tumor neoantigens

Jasreet Hundal', Beatriz M. Carreno’, Allegra A. Pett’, Gerald . Linette?, Obi L. Griffth'24%,
Elaine R Mardis"****" and Malachi Griffith'**

| Abstract

Cancer immunotherapy has gained significant momentum from recent clinical successes of checkpoint blockal

inhibition. Massively parallel sequence analysis suggests a connection between mutational load and response t

this class of therapy. Methods to identify which tumor-specific mutant peptides (neoantigens) can elicit anti-tu

T cell immunity are needed to improve predictions of checkpoint therapy response and to identify targets for

vaccines and adoptive T cell therapies. Here, we present a flexble, streamlined computational workflow for

identification of personalized Variant Antigens by Cancer Sequencing (pVAC-Seq) that integrates tumor mutatio
| and expression data (DNA- and RNA-Seq). pVAC-Seq is available at https2/github.com/griffthlab/pVAC-Seq
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Genome-level

application

Bulk/batched prediction of genome-level antigens

Automated report with rich annotation and candidate suggestion

Use of more
information

Is MHC-I binding affinity the only applicable feature?

[s IC5y under 50nM (or 500nM) an acceptable cut-oft?

Discovery of
new: features

Can we find a new feature for immunogenicity prediction?

Should be able to process all steps from NGS sequencing to final call
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NGS based Genome-level application

For genome-level application, the followings should be automated or properly handled:

1.

2.

Accurate calling of somatic mutations from NGS data

Conversion of genetic variants to protein sequence alteration
1. must consider transcript structures, or which to use for backbone
2. needto cutinto shorter peptides (e.g. 9-mer)

Inference of HLA alleles
Expression level analysis of:

1. immune-regulatory genes
2. genes containing candidate neopeptides

. Calculation of immunogenicity features including:

1. MHC-binding affinity (IC50)
2. And other information (as much as possible)

Effective binding of information sources and determination of final call

Neopepsee

Neopepsee: accurate genome-level prediction of neoantigens

———————— optional
essential
Somatic mutations RNA-Seq Clinical HLA typing
(VCF format) (FASTQ format) (if available)
1 .
3 v v
NS 1. Immune
SR\ 2 ) Transcipt (isoform) HLA type
5 S Pro(ein(}i‘x : genrs%ils:;)?;mn prediction prediction
Golgi \‘ ‘Rf; PRI 2 g Step 1l Step Zl
Peptides © o / \\ '
Prot \\ E: d mutant '
LTSN O e i et it st <
/ -
' /////////’”l////// Wi TN \\\\\\\\\\\\\\\ (e |
i r/M I fl N ”ﬂ E{IHH\ \\\\\\\\\\ L) l
3. pMHCI cos MHC binding affinity prediction
T-cell activation TCR l
— MHC binding and Sequence similarity to
Vet cancas (10 [ Known oiopes
T ce“ ‘ IC50 score Local alignment (BLOSUM
- Percentile rank

oMHCI @ Tumor specific antigen T Major histocompability complex | (MHC) pMHC presentation Feature calculation
P P Bm T-cell recognition
l’ Auxillary information
Amino acid characteristics Immunogenicity classification Different agretopicity index
Moalecular hydrophobicty Amino acid pairwise
Polarity and charged value l contact potentials

Determination of
immunogenic neo-antigens

Sora Kim et al, Annals of Oncology, 2018
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Regarding Transcript-specific peptides

K K
*
. D Sl
A  — ———— Isoform 2
— — —— Isoform 3
dbSNP ID Transcript ID (by knwongenes) Ref  Alt WT MT
hg19_knownGene_uc00laxv.3 T A ASRLSMKQHLDSLFDNH ASRLSMKQQLDSLFDNH
rs79751787 hg19_knownGene_uc0100bx.1 T A MKQHLDSLFDNH MKQQLDSLFDNH
hg19_knownGene_uc0100by.1 T A FSAVHEAASGLAVRQPL FSAVHEAATGLAVRQPL
Scale S0 bases}
chri: | 16,355, 625| 16,355, 638| 16,355, 635| 1¢,39s,640| 16,355, 645| 16,355,658|
___>cacc'ro'rccaTcﬁﬂccncca|7|c~rccﬂcrcccrcT
CLCNKA ¢
EMEITEG)
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CLCNKA | S t 3
CLCNKA = (= 9 || [ § 1] [ 1]
CLCNKA | ks s L G = |V |
CLCNKE e S | N E=xE= . [EE=t=a—| [ ]

Neopepsee determines the sequence of neopeptides regarding the most expressed transcript isoform.

Considering multiple features at once

1. MHC binding and presentation
1. predicted ICs, value
2. percentile rank
3. protein cleavage
4. TAP (transporter associated with antigen processing) efficiency
5. T-cell recognition

2. Amino-acid characteristics
1. amino acid hydrophobicity
2. amino acid polarity and charge

3. Auxiliary features
1. DAI: differential agretopicity
2. AAPP: amino acid pairwise contact potential

4. Sequence similarity to known epitopes
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Onrare HLA alleles

MHC binding affinity in IC50 score is not available for rare HLA alleles.

IC50 and IEDB_rank correlation with positive set

p=1.20249246955536e-192 °
S 4 r=0738604
b=0.00329
g ©
@
- ~
o Percentile rank:
SR ‘ : : : : rank of the predicted affinity of the given peptide
0 500 1000 1500 2000 2500 sequence among ~400,000 random natural
120 peptides
1C50 and IEDB_rank correlation with negative set
g ] p=1.37899319079386e-186
r=0.712961
2 - b=0.00188
g
B s
< T T T T T
0 10000 20000 30000 40000 50000
IC50

Automatic calculation of multiple features

Immunogenetics (2010) 62:357-368
DOI 10.1007/500251-010-0441-4

ORIGINAL PAPER

NetCTLpan: pan-specific MHC class I pathway

epitope predictions

Thomas Stranzl - Mette Voldby Larsen -
Claus Lundegaard - Morten Nielsen

Received: 31 October 2009 /Accepted: 16 March 2010 /Published online: 9 April 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

* MHC score
 TAP score

* Cleavage score

* Combined score

DESCRIPTION

The prediction output consists of 11 columns

Prediction number

Protein identifier

HLA Allele

Peptide sequence

MHC Prediction score (in 1-log50K(aff) unigs)

TAP Prediction score

Cleavage Prediction score

Combined Prediction score

%Random - %Rank of prediction score to a set of 1000.000 random natural Smer peptides
Epitope assignment

EXAMPLE QUTPUT

# NetCTLpan version 1.1

& Peptide length 9
& MetCTLpan predictions for HLA-AO1:01 allele.

# N Seauence Name Allele Peptide MHC TAP Cle Comb  %Rank
0 143B_BOVIN__P23  HLA-AQ1:01 TMKSELYQ 0.10500 -0.18300 0.16188 0.13685 50.00
1 143B_BOYIN__P29  HLA-AO1:01 MDKSELYOK 0.02300 0.21200 0.53837 0.14343 50.00
2 143B_BOVIN__P23  HLA-AO1:01 DKSELVQKA 0.01200 -0.77000 0.78670 0.16976 50.00
J 143B_BOVIN__P23  HLA-AQ1:01 KSELVOKAK  0.07600 0.32900 0.45985 0.18769 32.00
4 143B_BOVIN__P29  HLA-A01:01 SHYIKAKL 0.01400 0.99100 0.91927 0.24561 32.00

‘235 143B_BOVIN__P29 HLA-AO1:01 DEGDAGEGE  0.00300 -2.21000 0.04146 -0.04292 50.00
236 143B_BOYIMN__P29 HLA-A01:01 EGDAGEGEN  0.02000 -2.10100 0.05666 -0.01978 50.00

Number of MHC ligands 4 identified. Number of peptides 237. Allele HLA-A0101. Protein name 143B_BOVIN__P29
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pMHC-I| presentation for recognition by TCR

PLOS | satermoms

OPEN 8 ACCESS Freely available online

Properties of MHC Class | Presented Peptides | [ |~ = " 0s vacciio aena cosiela
Enhance Immunogenicity Mo | Mmooe o me
Unrecognized

. . . HLA restricted 99 33 159 -
Jorg J. A. Calis'*, Matt Maybeno?, Jason A. Greenbaum?, Daniela Weiskopf?, Aruna O | |\ eovicted o : ’ 1

Alessandro Sette?, Can Kesmir', Bjoern Peters®

Combine all data sets
Select 9mers
Exclude redundant pMHCs

1 Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands, 2 Division of Vaccine Discovery, La Jolla Institute for Aller
California, United States of America, 3 Genetech Research Institute, Colombo, Sri Lanka

Abstract . Mouse Human
. X X - . T-cell recognized
T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector| HLA restricted 308 602
studies demonstrate that some peptides are more immunogenic than others and therefore more likely to H-2 restricted 292
We set out to determine which properties cause such differences in immunogenicity. To this end, we colld E{‘A’er::gcrl‘zed — N
a large set of data descriping the.imn'\um?gepicity_of pept!des presente(_i on various MHC-l molect.]lfrs. Twi H-2 restricted 6 .
could be drawn from this analysis: First, in line with previous observations, we showed that positions P4
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C k > doi:10.1371/journal.pcbi.1003266.9001
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Amino acids features - hydrophobici
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Amino acid features - polarity and charged values
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Amino acids

Entropy and molecular weight

Research article

Vertical T cell immunodominance and epitope
entropy determine HI| e . acad. s vsa

Vol. 73, Ne. 10, pp. 36713675, October 1976
Immunology
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mlhhngtmhuhenmwmdin-lmnlshmwwu In this study, we sought to vary several molecular

ed by various polymer ¢ i qeo) antigen, looking for those responsible for the
::::'::;:"mmnm 1210 16 appropristely triggering of a bone-marrow-derived lymphocyte (B-cell) to
while those polymers wi ater than this number were fully differentiate and to produce specific antibody in the primary
immunogenic. The remlhﬁd the conclusion that the im- immune response. We desired as our ideal antigen a molecule

at its most el level is ized, mllgproperh should consist -
i, 8 minimum specific number of nli’yn K with the lo].ln or “hack o ) I:u_um mads :f{r:;-nﬂll:g
wwmduly 12 to 16) must be connected together as a spati P and with hlpun groups projecting from it. (if) The
Table 1, CI istics of p of fracti Dnp-polyacrylamide molecular weight, and therefore the length, of the carrier should
— be manipulable. (i) It should be nondegradable by the host
Preparation A B c D E F tes organism. {fv) The molecule should be linear, flexible, un-
1 p N N v ¥ N - pir- charged, and llydmphlljcm that it might interact freely with
mmunogenic o o Cl o8 o es
Molecular weight, x 107 0.5 0.8 14 1.8 13 s pat cellsurface in geometrical ar
Acrylamide monomer subunits/molecule 670 1050 1850 2350 1830 4650
Extended length of polymer chain, A 1700 2600 4600 6000 46800 11,600
Acrylamide monomer subunits/Dnp 48 42 38 36 230 270
Average distance between Dnp groups, A 120 105 25 a0 575 875
Total Dnp groups/molecule 14 25 48 66 8 17
“Effective’” Dnp groups/molecule 5-7 8-12 18-24 22-33 7-8 16-17
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patient origin sequence EKQDYR

Protein sequence similarity

7C12

EG2

Known Epitope sequence
approximately 400,000

Vaccinia virus  ERQDYR

XN 0nWITNMEAr—IoOmMmONODZIO>r

Protein sequence local alignment
EGH
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BLOSUM 100 Matrix
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AVQLVESGGGSVQAGGSLRLTCAASGRTSRSYGMGWFRQAPGKEREFVS

L TTLEETTEEETTT
QVKLEESGGGLVQAGDSLRVSCAASGRDF SDYVMGWFRQAPGKEREFVA

Feature

Selecting what to use (feature selection)

B s

Sim 070 040 291 y
c. n-- wm e
RANK 410 - 200 531 070 052 134 m
DAI 100 600 060 521 050 .022 191 —
Comb 664 .140 | 672 | 150 629 080 515 040 022 .145 E
Hyd 743 050 743 080 550 040 522 040 014 .139 u
P&C 862 .040 857 .040 662 .050 512 .030 .0o8 .053 I“_
MHC| 749 060 756 060 656 050 508 030 018 .0M ]
AAPPs 895 040 695 040 512 020 516 030 008 094 g

Imm 604 .030 805 .030 526 .030 511 .020 .003 .050

Ent 549 020 550 .020 521 030 504 020 .001 .023 E
um 537 ‘020 539 020 511 030 504 020 000 014 | W
RS @ WO I N I N G P R U E

= e @\3 \.\%\ @\3? & ‘1?@\3? 64"\2\1\!\%‘5? o o ’
Sarank |*‘

MethOd 0.00 0.50 1.00

Single feature based classifier

Inter-dependency of features

IQP‘MHM

wwmn' W
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Integration by machine learning

Instance

Randomy z \
’ ' ' ' ' NS NS NN
; = S e 7z
KRR KROR T £RRN

Tree-1 Tree-2 Tree-n

Class-A ClaISS-B Cla§s-B

3. Random forest

1. Naive Bayes and
2.locally weighted Naive Bayes

4. Support vector machine

Training data set

Positive dataset (N=311)

oren Baccrss e —— BPLOS sz
Properties of MHC Class | Presented Peptides That

e s e 1,113 experimentally
K — . .
validated epitopes

A\ 4

311 wild-type assignable
epitopes

22,245 common (MAF>0.05),
non-synonymous SNVs

dbSNP

<
(3 NCBI Short Genetic Variations

dbVar Clinvar PubMed Nucleotide Protein ild-t .
Search small variations in dbSNP or large structural variations in dbVar wi ype:
Search Entrez| doSNP v [for Go | corresponding human reference protein
ANNOUNCEMENTEY
A\ 4
b%‘ List of 53 organisms with variant
i £ | annotation on their genomes
S ;{ available for web search and FTP reduced to 14-,6 3 3
* download.
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Sensitivity
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1Cs0
AUC 0.96
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RANK

AUC 0.946
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AUC 0.975

06 08

1-Specificity
LNB

AUC 0.976

RF
AUC 0.976

1.0

= SVM
AUC 0.981

1.0
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0.6

Precision
0.4

0.0
L

0.0

ICso
AUC 0.24

0.2

RANK

AUC 0.28

0.4

= GNB

AUC 0.41

0.6 0.8
Recall

LNB
AUC 0.44

RF
AUC 0.68

1.0

= SVB
AUC 0.61

IC50 <500
RANK $2.49
GNB High
Medium
LNB High
Medium
RF High
Medium
SVM High
Medium|

IC50 5500
RANK £2.49
GNB High
Medium|
LNB High
Medium)
RF  High
Medium)
SVM High
Medium

075

030 085
Sensitivity

050

1C50 5500
RANK <249
GNB High
Medium|
LNB High
Medium)
RF  High
Medium|
SVM High
Medium|

IC50 <500
RANK £2.49
GNB High
Medium)
LNB High
Medium|
RF  High
Medium|
SVM High
Medium|

IC50 =500
RANK $2.49
GNB High
Medium)
LNB High
Medium)
RF  High
Medium
SVM High

Specificity

single IC50 threshold and

% 025

030 0@

Precision

Medium|

Accuracy

045
Mcc

050

pepsee Accuracy

Classification power of

Neopepsee
VS.

single rank threshold

Sora Kim et al

Peptide sequence similarity

Wild-type human SMAD4 peptides
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Mutant human SMAD4 peptides
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Epitope from M. tuberculosis H37Ra
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Validation of scores

MELZ|  ivcenron coomseix cmu owscne e naom mesars
CANCER IMMUNOTHERAPY Potbeskes
A dendritic cell vaccine increases the |~ :
breadth and diversity of melanoma weLss
neoantigen-specific T cells o
Beatriz M. Carreno," Vincent Magrini,” Michelle Becker-Hapak,' Saghar Kaabinejadian,* R
Jasreet Hundal,? Allegra A. Petti,” Amy Ly,” Wen-Rong Lie,* William H. Hildebrand,* “
Elaine R. Mardis,” Gerald P. Linette MEL218  orocscser
T cell immunity directed against tumor-encoded amino acid substitutions occurs in some oot
melanoma patients. This implicates missense mutations as a source of patient-specific
A B P=0.005975 P=0.4195 P=6.84E-05
121
IC50 RANK Neopepsee 1. 0.001 RPN
<500nM <249  medium high 4004
# of calls 283 184 259 197 o4 .
. 0.25+ N
# of hits 12 1 12 10 .
# of FPs 29 31 26 14 © 300
Sensitivity 1.00 0.92 1.00 0.83 S :
O 61 0.50+ .
Specificitiy 0.45 0.42 0.51 0.74 »n 2001
F-score 0.45 0.41 0.48 0.56 : —
31 0.751 L
100+
« Rajasagi et al(2014) N . -,&z‘ o S e
Carreno et al(2015) (4 . 04 > R 1.00 sea® “o® o
immunolgenic non—imlemogenic immunoéenic non—imlemogenic immunolgenic non—immijnogenic
Rank ICs0 Neopepsee
Application to TCGA data
100 100
i Neoantigens MSI status
—_ Positive (n=212) —_ —— MSI (n=65)
8 80 —— Negative (n=11) B 80 + —— MSS (n=158)
= 1 2
= 29.1 months vs 14.1 months 3 29.4 months vs 26.7 months
E 60 - (log-rank P=0.024) ® 60 (log-rank P=0.616)
e 1 e
5 5 — ]
3 401 g 401
g 1 c
3 3
2] 20 -~ w 20
0 T T T T T T T T T T d 0 T T T T T T T T L— | T
0 12 24 36 48 60 72 84 0 12 24 36 48 60 72 84
Time (months) Time (months)
Univariate analysis Multivariate analysis
Variable Category
HR 95% Cl P HR 95% Cl P
Neoantigens negative v positive (ref) 3.1  1.18t0 8.47 0.022* 22 104t04.82 0.040*
Stage I IV v L, 11 (ref) 24 1.14t0508 0.021* 20 125t03.16 0.004*
Sex female v male (ref) 09 044t0210 0923 11 072t0186 0545
Age >65 v <65 (ref) 11 073t01.76 0.571 10 066t01.63 0.878
Cytolytic activity (Rooney, et al) high v low (ref) 08 052t01.30 0.398 0.8 049t01.25 0.306
Microsatellite instability (MSI) ~ MSI v MSS (ref) 09 054t0143 08617 10 061to1.65 0.989

® D sinliine <03 OZe UD hasard sarine £ ~nnfidanca intanial: MEE micemraallivn ctahln
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Community-based Guideline for
Neoantigen Prediction

Cell

Key Parameters of Tumor Epitope Immunogenicity
Revealed Through a Consortium Approach Improve
Neoantigen Prediction

1. Global consortium to improve neoantigen prediction

HLA Typing

SuPLE
cotLEcTIon
0

PRESENTATION FEATURES

2. Integrated model of tumor epitope immunogenicity
RECOGNITION FEATURES

)

~SOrCe
h* S

® e | Y Y

Precision

0k -
A o3

0 Recall

Specificity: 0.98
Precision: 0.7

3. Model validation

aPD1 RESPONSE
PREDICTION

NEOANTIGEN PREDICTION

INDEPENDENT COHORT
VALIDATION

6 subjects

(3 with metastatic melanoma, 3 with NSCLC)
25/28 teams participated

each team reported 7 to 81,904 candidates
median 204

608 were selected and validated (multimer-
based assay)

37/608 (6%) were immunogenic

m—oh  m=Low

Community-based Guideline for
Neoantigen Prediction

C D E F
100 © .
> 104 Fkdkk 8 102 * > e -g * .
= c = <
= =
£ £ 10! 85" 8-0 5
< = 0.
- BB
£~ o
£ <L 4o £Z10 =
£ o ° o
o 1 £ £ =
2 10’ [ -]
3 : 0.1 s 0
False True False True False True False True
Immunogenicity Immunogenicity Immunogenicity Immunogenicity
B 2 2 o (o]
MutanT: A*02:01:RMGQTVIAV s g 2 ¥ .
WildType: A*02:01:RMGQTVRAV g g5 22, 822 ) 20 g
. - D E=ECE ocgc== 1
Agretopicity § ¢ B EEZ 28 , !
BA,, < u a<2gmnis ! !
A= —— Agretopicity 1 !
BA,; s &5 | €10 I
. c | c 1
H Foreignness - 3 3
Foreignness 9 s 3 3 !
F= - - o O o
Binding Affinity = .
Z() Y exp(—k(a—s.el)) o 1
o Tumor Abundance - © '44
1. Assess 2. Calculate I 0 0
pathogenic TCR recognition Binding 0.4 10° 107 10! 107 10%
homology of MT  Probability Stability

Agretopicity Foreignness

Derive informative features
binding affinity, Tumor abundance, Binding stability, Hydrophobicity
Agretopicity, Foreignness
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Conclusion

Ct 2ot cancer immunotherapy 2| X2 2
AHIS 0|2

AES oK =7t 42D AS
ER= RI-'HEf H2 FHES ?Iot 2HAt
antigen &= 0| ‘*'_9_0F
HLA type MHC binding, Antigen processing =
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Thank you

Your success is our success. We've prescription for your business.
We are professional communication group.
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